Streamer formation and collapse in electron temperature gradient driven turbulence

被引:12
|
作者
Gürcan, OD [1 ]
Diamond, PH [1 ]
机构
[1] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
关键词
D O I
10.1063/1.1637920
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A simple model is useful to understand the formation and persistence of radially elongated structures (streamers) in electron temperature gradient (ETG) driven modes. The ETG model is very similar to the thermal Rossby wave model, a system of broad interest. The detailed correspondence of these two models is discussed. Streamer formation in this simple model is analyzed using the modulational stability method. In the inviscid limit of the model, an amplitude equation similar to the nonlinear Schrodinger equation (NLS) is derived. This equation has a second derivative cubic nonlinearity and is identified as a special case of a more general higher order NLS. Analytical solutions are found in the form of travelling waves and a localized thorn. Using the Lagrangian structure of the amplitude equation, it is shown that one-dimensional collapse in the poloidal direction is possible in this system for certain parameter values, and for sufficiently localized inital flow. This identifies a parameter regime basin in which there is an attractor with the structure of a thin extended streamer. In the viscous limit, another amplitude equation, which is a certain special case of the generalized complex Ginzburg-Landau equation, is obtained. Fixed points of the corresponding dynamical system are identified and their stability is investigated. (C) 2004 American Institute of Physics.
引用
收藏
页码:572 / 583
页数:12
相关论文
共 50 条
  • [31] Stability of E x B zonal flow in electron temperature gradient driven turbulence
    Idomura, Y
    Wakatani, M
    Tokuda, S
    PHYSICS OF PLASMAS, 2000, 7 (09) : 3551 - 3566
  • [32] Stabilization of ion temperature gradient driven turbulence and formation of an internal transport barrier in a tokamak
    Voitsekhovitch, I
    Garbet, X
    Benkadda, S
    Beyer, P
    Figarella, CF
    PHYSICS OF PLASMAS, 2002, 9 (11) : 4671 - 4684
  • [33] CONSIDERATIONS OF ION-TEMPERATURE-GRADIENT-DRIVEN TURBULENCE
    COWLEY, SC
    KULSRUD, RM
    SUDAN, R
    PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1991, 3 (10): : 2767 - 2782
  • [34] Nonlinear low noise particle-in-cell simulations of electron temperature gradient driven turbulence
    Bottino, A.
    Peeters, A. G.
    Hatzky, R.
    Jolliet, S.
    McMillan, B. F.
    Tran, T. M.
    Villard, L.
    PHYSICS OF PLASMAS, 2007, 14 (01)
  • [35] Composition of electron temperature gradient driven plasma turbulence in JET-ILW tokamak plasmas
    Chapman-Oplopoiou, B.
    Walker, J.
    Hatch, D. R.
    Goerler, T.
    PHYSICAL REVIEW RESEARCH, 2025, 7 (01):
  • [36] Probing plasma turbulence by modulating the electron temperature gradient
    DeBoo, J. C.
    Holland, C.
    Rhodes, T. L.
    Schmitz, L.
    Wang, G.
    White, A. E.
    Austin, M. E.
    Doyle, E. J.
    Hillesheim, J.
    Peebles, W. A.
    Petty, C. C.
    Yan, Z.
    Zeng, L.
    PHYSICS OF PLASMAS, 2010, 17 (05)
  • [37] Electromagnetic secondary instabilities in electron temperature gradient turbulence
    Holland, C
    Diamond, PH
    PHYSICS OF PLASMAS, 2002, 9 (09) : 3857 - 3866
  • [38] ION TEMPERATURE-GRADIENT DRIVEN TURBULENCE IN THE WEAK DENSITY GRADIENT LIMIT
    HAMAGUCHI, S
    HORTON, W
    PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1990, 2 (12): : 3040 - 3046
  • [39] Turbulent electron transport in edge pedestal by electron temperature gradient turbulence
    Singh, R.
    Jhang, Hogun
    Diamond, P. H.
    PHYSICS OF PLASMAS, 2013, 20 (11)
  • [40] Electron geodesic acoustic modes in electron temperature gradient mode turbulence
    Anderson, Johan
    Nordman, Hans
    Singh, Raghvendra
    Kaw, Predhiman
    PHYSICS OF PLASMAS, 2012, 19 (08)