Surface optimization of metal halide perovskite solar cells using ZnS nanorods

被引:2
作者
Abbas, Hasan [1 ]
Ahmad, Sultan [1 ]
Parvaz, M. [1 ]
Khan, Mohd Bilal [1 ]
Khan, Mohammad Salman [1 ]
Khan, Asim [1 ]
Alshahrie, Ahmad [2 ,3 ]
Khan, Zishan H. [1 ]
机构
[1] Jamia Millia Islamia, Organ Elect & Nanotechnol Res Lab, Dept Appl Sci & Humanities, New Delhi, India
[2] King Abdulaziz Univ, Ctr Nanotechnol, Jeddah, Saudi Arabia
[3] King Abdulaziz Univ, Fac Sci, Dept Phys, Jeddah, Saudi Arabia
关键词
HIGH-PERFORMANCE; EFFICIENCY; ARRAYS; STABILITY; SILICON; CARBON; LAYER; FILMS;
D O I
10.1007/s10854-022-08947-7
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The present paper reports the fabrication of solar cells using surface-optimized ZnS-Perovskite composites. Initially, ZnS nanorods (NRs) were synthesized via precursor thermolysis route. Further, these ZnS NRs were used to prepare different ZnS-CH3NH3PbI3 composites (0, 2, 4, and 6 mg/ml). The synthesis of ZnS NRs and ZnS-CH3NH3PbI3 composites was confirmed by XRD, scanning electron microscopy/SEM, and UV-Visible/Photoluminescence (PL) spectroscopy techniques. The SEM micrographs suggested that the grain size increases with the increase in the concentration of ZnS NRs into perovskite matrices resulting reduction in grain boundary problem. The J-V curve of as-fabricated solar devices has demonstrated the significant enhancement in overall photovoltaic performance. The best performing device has shown an open-circuit voltage/V-oc of 0.81 V, short-circuit current density/J(sc) of 9.64 mA/cm(2), fill factor /FF of 63.43%, power conversion efficiency/PCE (eta) of 4.95%, shunt resistance/R-sh of 4591 Omega-cm(2), and series resistance/R-s of 22.1 Omega-cm(2). It retained similar to 80% of its original efficiency after 30 days of exposure in ambient atmosphere.
引用
收藏
页码:21576 / 21587
页数:12
相关论文
共 60 条
[41]   Addressing the stability issue of perovskite solar cells for commercial applications [J].
Meng, Lei ;
You, Jingbi ;
Yang, Yang .
NATURE COMMUNICATIONS, 2018, 9
[42]   NiO@GeSe core-shell nano-rod array as a new hole transfer layer in perovskite solar cells: A numerical study [J].
Mohammadi, Mohammad Hosein ;
Fathi, Davood ;
Eskandari, Mehdi .
SOLAR ENERGY, 2020, 204 :200-207
[43]  
National Renewable Energy Laboratory, CELL EFF
[44]   Improving pore-filling in TiO2 nanorods and nanotubes scaffolds for perovskite solar cells via methylamine gas healing [J].
Nawaz, Asmat ;
Wong, Ka Kan ;
Ebenhoch, Carola ;
Zimmermann, Eugen ;
Zheng, Zhaoke ;
Akram, Muhammad Nadeem ;
Kalb, Julian ;
Wang, Kaiying ;
Fakharuddin, Azhar ;
Schmidt-Mende, Lukas .
SOLAR ENERGY, 2018, 170 :541-548
[45]   Highly efficient perovskite solar cells with crosslinked PCBM interlayers [J].
Qiu, W. ;
Bastos, J. P. ;
Dasgupta, S. ;
Merckx, T. ;
Cardinaletti, I. ;
Jenart, M. V. C. ;
Nielsen, C. B. ;
Gehlhaar, R. ;
Poortmans, J. ;
Heremans, P. ;
McCulloch, I. ;
Cheyns, D. .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (06) :2466-2472
[46]   Emerging perovskite monolayers [J].
Ricciardulli, Antonio Gaetano ;
Yang, Sheng ;
Smet, Jurgen H. ;
Saliba, Michael .
NATURE MATERIALS, 2021, 20 (10) :1325-1336
[47]  
Shan-shan rong, 2021, Journal of Electronic Science and Technology, P1, DOI 10.1016/j.jnlest.2021.100081
[48]   High shunt resistance in polymer solar cells comprising a MoO3 hole extraction layer processed from nanoparticle suspension [J].
Stubhan, Tobias ;
Ameri, Tayebeh ;
Salinas, Michael ;
Krantz, Johannes ;
Machui, Florian ;
Halik, Marcus ;
Brabec, Christoph J. .
APPLIED PHYSICS LETTERS, 2011, 98 (25)
[49]   Optoelectronic modeling and sensitivity analysis of a four-terminal all-perovskite tandem solar cell - Identifying pathways to improve efficiency [J].
Tan, Hu Quee ;
Zhao, Xinhai ;
Birgersson, Erik ;
Lin, Fen ;
Xue, Hansong .
SOLAR ENERGY, 2021, 216 :589-600
[50]   A facile green solvent engineering for up-scaling perovskite solar cell modules [J].
Tian, Shi ;
Li, Jing ;
Li, Saisai ;
Bu, Tongle ;
Mo, Yanping ;
Wang, Song ;
Li, Wangnan ;
Huang, Fuzhi .
SOLAR ENERGY, 2019, 183 :386-391