Structure Preserving Sparse Coding for Data Representation

被引:3
作者
Shu, Zhenqiu [1 ,2 ,3 ]
Wu, Xiao-jun [2 ]
Hu, Cong [2 ]
机构
[1] Jiangsu Univ Technol, Sch Comp Engn, Changzhou, Peoples R China
[2] Jiangnan Univ, Sch IoT Engn, Wuxi, Peoples R China
[3] Nanjing Univ Sci & Technol, Jiangsu Key Lab Image & Video Understanding Socia, Nanjing, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Sparse coding; Data representation; Manifold structure; Structure preserving; Local affinity; Distant repulsion; DIMENSIONALITY REDUCTION; FACE RECOGNITION; EIGENFACES;
D O I
10.1007/s11063-018-9796-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Sparse coding methods have shown the superiority in data representation. However, traditional sparse coding methods cannot explore the manifold structure embedded in data. To alleviate this problem, a novel method, called Structure Preserving Sparse Coding (SPSC), is proposed for data representation. SPSC imposes both local affinity and distant repulsion constraints on the model of sparse coding. Therefore, the proposed SPSC method can effectively exploit the structure information of high dimensional data. Beside, an efficient optimization scheme for our proposed SPSC method is developed, and the convergence analysis on three datasets are presented. Extensive experiments on several benchmark datasets have shown the superior performance of our proposed method compared with other state-of-the-art methods.
引用
收藏
页码:1705 / 1719
页数:15
相关论文
共 35 条
[21]   p-Laplacian Regularized Sparse Coding for Human Activity Recognition [J].
Liu, Weifeng ;
Zha, Zheng-Jun ;
Wang, Yanjiang ;
Lu, Ke ;
Tao, Dacheng .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2016, 63 (08) :5120-5129
[22]   Hyperspectral Unmixing via L1/2 Sparsity-Constrained Nonnegative Matrix Factorization [J].
Qian, Yuntao ;
Jia, Sen ;
Zhou, Jun ;
Robles-Kelly, Antonio .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (11) :4282-4297
[23]   Nonlinear dimensionality reduction by locally linear embedding [J].
Roweis, ST ;
Saul, LK .
SCIENCE, 2000, 290 (5500) :2323-+
[24]  
Saunders M., 2002, PDCO PRIMAL DUAL INT
[25]   Multiple Laplacian graph regularised low-rank representation with application to image representation [J].
Shu, Zhenqiu ;
Fan, Hongfei ;
Huang, Pu ;
Wu, Dong ;
Ye, Feiyue ;
Wu, Xiaojun .
IET IMAGE PROCESSING, 2017, 11 (06) :370-378
[26]   Local and global regularized sparse coding for data representation [J].
Shu, Zhenqiu ;
Zhou, Jun ;
Huang, Pu ;
Yu, Xun ;
Yang, Zhangjing ;
Zhao, Chunxia .
NEUROCOMPUTING, 2016, 175 :188-197
[27]   Local regularization concept factorization and its semi-supervised extension for image representation [J].
Shu, Zhenqiu ;
Zhao, Chunxia ;
Huang, Pu .
NEUROCOMPUTING, 2015, 158 :1-12
[28]   A global geometric framework for nonlinear dimensionality reduction [J].
Tenenbaum, JB ;
de Silva, V ;
Langford, JC .
SCIENCE, 2000, 290 (5500) :2319-+
[29]   EIGENFACES FOR RECOGNITION [J].
TURK, M ;
PENTLAND, A .
JOURNAL OF COGNITIVE NEUROSCIENCE, 1991, 3 (01) :71-86
[30]   Robust Face Recognition via Sparse Representation [J].
Wright, John ;
Yang, Allen Y. ;
Ganesh, Arvind ;
Sastry, S. Shankar ;
Ma, Yi .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2009, 31 (02) :210-227