An MHD Stirrer 2D Velocity Profile Measurement Validation Through a Machine Vision System

被引:0
作者
Flores-Fuentes, Wendy [1 ]
Valenzuela-Delgado, Monica [1 ,3 ]
Gonzalez-Navarro, Felix F.
Caceres-Hernandez, Danilo [2 ]
Sergiyenko, Oleg [3 ]
Rodriguez-Quinonez, Julio C. [1 ]
Rivas-Lopez, Moises [1 ]
Bravo-Zanoguera, Miguel E. [1 ]
Hernandez-Balbuena, Daniel [1 ]
机构
[1] Univ Autonoma Baja California, Fac Ingn, Campus Mexicali, Mexicali, Baja California, Mexico
[2] Univ Tecnol Panama, Lab Sistemas Inteligentes, Panama City, Panama
[3] Univ Autonoma Baja California, Inst Ingn, Mexicali, Baja California, Mexico
来源
45TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY (IECON 2019) | 2019年
关键词
data mining; filtering; magnetohydrodynamics; particle image velocimetry; measurements; machine vision; FLOW;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The paper presents a technique developed for the enhancement of a Particle Image Velocimetry (PIV) measurement process in a customized machine vision system. The PIV measurements are performed for an accurate "Velocity Profile" mathematical model validation of a Magnetohydrodynamic (MHD) stirrer prototype. Data mining and filtering have been applied to a raw measurement database from the customized machine vision system designed to evaluate the MHD stirrer prototype. Outlier's elimination and smoothing have been applied to raw data to approximate the PIV measurements output to the velocity profile mathematical model in order to increase the accuracy of a customized machine vision system for 2D velocity profile measurements. The accurate measurement of the 2D velocity profile is fundamental owing to the requirement of future enhancement of the customized machine vision system to construct the 3D velocity profile of the MHD stirrer prototype. The presented technique can be used for measurement and validation in the design of devices that require fluid manipulation for tasks such as pumping, networking, propelling, stirring, mixing, and even cooling without a need for mechanical components due to MHD ' s non-intrusive nature provides a solution to mechanical moving elements issues.
引用
收藏
页码:5584 / 5589
页数:6
相关论文
共 32 条
[1]   Twenty years of particle image velocimetry [J].
Adrian, RJ .
EXPERIMENTS IN FLUIDS, 2005, 39 (02) :159-169
[2]   Review of magnetohydrodynamic pump applications [J].
Al-Habahbeh, O. M. ;
Al-Saqqa, M. ;
Safi, M. ;
Khater, T. Abo .
ALEXANDRIA ENGINEERING JOURNAL, 2016, 55 (02) :1347-1358
[3]   A magneto-hydrodynamically controlled fluidic network [J].
Bau, HH ;
Zhu, JZ ;
Qian, SZ ;
Xiang, Y .
SENSORS AND ACTUATORS B-CHEMICAL, 2003, 88 (02) :205-216
[4]   An iterative boosting-based ensemble for streaming data classification [J].
Bertini Junior, Joao Roberto ;
Nicoletti, Maria do Carmo .
INFORMATION FUSION, 2019, 45 :66-78
[5]   Some practical applications of magnetohydrodynamic pumping [J].
Das, Champak ;
Wang, Guochun ;
Payne, Forrest .
SENSORS AND ACTUATORS A-PHYSICAL, 2013, 201 :43-48
[6]   A study of MHD-based chaotic advection to enhance mixing in microfluidics using transient three dimensional CFD simulations [J].
Yuan, Fangping ;
Isaac, K.M. .
Sensors and Actuators, B: Chemical, 2017, 238 :226-238
[7]  
Flores-Fuentes Monica Valenzuela-Delgado Wendy, 2017, 2017 IEEE 26 INT S I
[8]  
Flores-Fuentes W., 2017, MECH SYSTEMS RES APP, P305
[9]   Optoelectronic instrumentation enhancement using data mining feedback for a 3D measurement system [J].
Flores-Fuentes, Wendy ;
Sergiyenko, Oleg ;
Gonzalez-Navarro, Felix F. ;
Rivas-Lopez, Moises ;
Hernandez-Balbuena, Daniel ;
Rodriguez-Quinonez, Julio C. ;
Tyrsa, Vera ;
Lindner, Lars .
OPTICAL REVIEW, 2016, 23 (06) :891-896
[10]   Multivariate outlier mining and regression feedback for 3D measurement improvement in opto-mechanical system [J].
Flores-Fuentes, Wendy ;
Sergiyenko, Oleg ;
Gonzalez-Navarro, Felix F. ;
Rivas-Lopez, Moises ;
Rodriguez-Quinonez, Julio C. ;
Hernandez-Balbuena, Daniel ;
Tyrsa, Vera ;
Lindner, Lars .
OPTICAL AND QUANTUM ELECTRONICS, 2016, 48 (08)