AUTOMATIC KNEE CARTILAGE SEGMENTATION USING FULLY VOLUMETRIC CONVOLUTIONAL NEURAL NETWORKS FOR EVALUATION OF OSTEOARTHRITIS

被引:0
|
作者
Raj, Archit [1 ]
Vishwanathan, Srikrishnan [1 ]
Ajani, Bhavya [1 ]
Krishnan, Karthik [1 ]
Agarwal, Harsh [1 ]
机构
[1] Samsung R&D Inst India Bangalore Pvt Ltd, Bangalore, Karnataka, India
来源
2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018) | 2018年
关键词
Knee; MRI; Osteoarthritis; Deep Learning; Segmentation; Cartilage;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Automated Cartilage segmentation is essential for improving the performance of advanced Knee Ostcoarthritis (OA) assessment due to its convoluted 3D structure. In this paper, we have developed a knee cartilage segmentation algorithm from a high resolution MR volume using a novel 3D- fully Convolutional Neural Network (CNN), called 'mu-Net' coupled with a multi-class loss function. This is, to our knowledge, the first automatic cartilage segmentation method using 3D CNNs. The proposed algorithm performed better than the state-of-the-art algorithm in the MICCAI SKI10 public challenge. We have further applied our proposed algorithm on another similar MR contrast (DESS) provided by Osteoarthritis Initiative (OAI) for OA assessment and have presented improved segmentation accuracies. Initial qualitative assessment of segmentation results visually depicts cartilage loss in longitudinal knee MR data.
引用
收藏
页码:851 / 854
页数:4
相关论文
共 50 条
  • [1] Automatic knee cartilage and bone segmentation using multi-stage convolutional neural networks: data from the osteoarthritis initiative
    Anthony A. Gatti
    Monica R. Maly
    Magnetic Resonance Materials in Physics, Biology and Medicine, 2021, 34 : 859 - 875
  • [2] Automatic knee cartilage and bone segmentation using multi-stage convolutional neural networks: data from the osteoarthritis initiative
    Gatti, Anthony A.
    Maly, Monica R.
    MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE, 2021, 34 (06) : 859 - 875
  • [3] FULLY AUTOMATIC SEMANTIC SEGMENTATION OF KNEE PLAIN RADIOGRAPHS USING CONVOLUTIONAL DEEP NEURAL NETWORKS
    Tiulpin, A.
    Thevenot, J.
    Saarakkala, S.
    OSTEOARTHRITIS AND CARTILAGE, 2018, 26 : S446 - S446
  • [4] Automatic Detection and Classification of Human Knee Osteoarthritis Using Convolutional Neural Networks
    Sikkandar, Mohamed Yacin
    Begum, S. Sabarunisha
    Alkathiry, Abdulaziz A.
    Alotaibi, Mashhor Shlwan N.
    Manzar, Md Dilsad
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 70 (03): : 4279 - 4291
  • [5] Fully automatic wound segmentation with deep convolutional neural networks
    Chuanbo Wang
    D. M. Anisuzzaman
    Victor Williamson
    Mrinal Kanti Dhar
    Behrouz Rostami
    Jeffrey Niezgoda
    Sandeep Gopalakrishnan
    Zeyun Yu
    Scientific Reports, 10
  • [6] Fully automatic wound segmentation with deep convolutional neural networks
    Wang, Chuanbo
    Anisuzzaman, D. M.
    Williamson, Victor
    Dhar, Mrinal Kanti
    Rostami, Behrouz
    Niezgoda, Jeffrey
    Gopalakrishnan, Sandeep
    Yu, Zeyun
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [7] Knee menisci segmentation using convolutional neural networks: data from the Osteoarthritis Initiative
    Tack, A.
    Mukhopadhyay, A.
    Zachow, S.
    OSTEOARTHRITIS AND CARTILAGE, 2018, 26 (05) : 680 - 688
  • [8] Fully automatic acute ischemic lesion segmentation in DWI using convolutional neural networks
    Chen, Liang
    Bentley, Paul
    Rueckert, Daniel
    NEUROIMAGE-CLINICAL, 2017, 15 : 633 - 643
  • [9] Grading of Knee Osteoarthritis Using Convolutional Neural Networks
    D. R. Sarvamangala
    Raghavendra V. Kulkarni
    Neural Processing Letters, 2021, 53 : 2985 - 3009
  • [10] Grading of Knee Osteoarthritis Using Convolutional Neural Networks
    Sarvamangala, D. R.
    Kulkarni, Raghavendra V.
    NEURAL PROCESSING LETTERS, 2021, 53 (04) : 2985 - 3009