Signless Laplacian spectral radii of graphs with given chromatic number

被引:25
|
作者
Yu, Guanglong [1 ,2 ]
Wu, Yarong [2 ,4 ]
Shu, Jinlong [1 ,3 ]
机构
[1] E China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
[2] Yancheng Teachers Univ, Dept Math, Yancheng 224002, Jiangsu, Peoples R China
[3] E China Normal Univ, Shanghai Key Lab Trustworthy Comp, Shanghai 200241, Peoples R China
[4] Shanghai Maritime Univ, SMU Coll Art & Sci, Shanghai 200135, Peoples R China
基金
中国国家自然科学基金;
关键词
Signless Laplacian; Spectral radius; Chromatic number;
D O I
10.1016/j.laa.2011.03.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a simple graph with vertices v(1), v(2), ... , v(n), of degrees Delta = d(1) >= d(2) >= ... d(n) = delta, respectively. LetA be the (0, 1)-adjacency matrix of G and D be the diagonal matrix diag(d(1), d(2), ... , d(n)). Q(G) = D + A is called the signless Laplacian of G. The largest eigenvalue of Q(G) is called the signless Laplacian spectral radius or Q-spectral radius of G. Denote by chi(G) the chromatic number for a graph G. In this paper, for graphs with order n, the extremal graphs with both the given chromatic number and the maximal Q-spectral radius are characterized, the extremal graphs with both the given chromatic number chi not equal 0 4, 5, 6, 7 and the minimal Q-spectral radius are characterized as well. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1813 / 1822
页数:10
相关论文
共 50 条