Derivations with Engel conditions on multilinear polynomials

被引:51
作者
Lee, PH
Lee, TK
机构
关键词
multilinear polynomial; derivation; generalized polynomial identity;
D O I
10.1090/S0002-9939-96-03351-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be a prime algebra over a commutative ring K with unity and let f(X(l), ..., X(n)) be a multilinear polynomial over K. Suppose that d is a nonzero derivation on R such that for all r(l), ..., r(n) in some nonzero ideal I of R, [d(f(r(l), ..., r(n))), f(r(l), ..., r(n))](k) = 0 with k fixed. Then f(X(l), ..., X(n)) is central-valued on R except when char R = 2 and R satisfies the standard identity s(4) in 4 variables.
引用
收藏
页码:2625 / 2629
页数:5
相关论文
共 11 条
[1]   GPIS HAVING COEFFICIENTS IN UTUMI QUOTIENT-RINGS [J].
CHUANG, CL .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 103 (03) :723-728
[2]   PRIME NONASSOCIATIVE ALGEBRAS [J].
ERICKSON, TS ;
MARTINDALE, WS ;
OSBORN, JM .
PACIFIC JOURNAL OF MATHEMATICS, 1975, 60 (01) :49-63
[3]  
Jacobson N., 1964, AM MATH SOC C PUBL, V37
[4]  
Kharchenko VK., 1979, ALGEBR LOG+, V18, P86
[5]   DIFFERENTIAL IDENTITIES, LIE IDEALS, AND POSNER THEOREMS [J].
LANSKI, C .
PACIFIC JOURNAL OF MATHEMATICS, 1988, 134 (02) :275-297
[6]   AN ENGEL CONDITION WITH DERIVATION [J].
LANSKI, C .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 118 (03) :731-734
[7]  
LEE PH, 1983, B I MATH ACAD SINICA, V11, P75
[8]   NIL AND POWER-CENTRAL POLYNOMIALS IN RINGS [J].
LERON, U .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 202 (FEB) :97-103
[9]   PRIME RINGS SATISFYING A GENERALIZED POLYNOMIAL IDENTITY [J].
MARTINDALE, WS .
JOURNAL OF ALGEBRA, 1969, 12 (04) :576-+
[10]  
Posner E. C., 1957, P AM MATH SOC, V8, P1093, DOI [10.1090/S0002-9939-1957-0095863-0, DOI 10.1090/S0002-9939-1957-0095863-0]