Effect of incorporation of piezoelectric phases on antibacterial and cellular response of borate bioactive glass

被引:15
作者
Singh, Angaraj [1 ]
Singh, Priya [1 ]
Dubey, Ashutosh Kumar [1 ]
机构
[1] Indian Inst Technol BHU Varanasi, Dept Ceram Engn, Varanasi 221005, India
来源
OPEN CERAMICS | 2022年 / 9卷
关键词
Borate bioactive glass; BaTiO3; Na0.5; K0.5; NbO3; Polarization; Antibacterial response; BARIUM-TITANATE; HYDROXYAPATITE CONVERSION; CONTROLLABLE DEGRADATION; ELECTRICAL-STIMULATION; STAPHYLOCOCCUS-AUREUS; ESCHERICHIA-COLI; SURFACE; BOROSILICATE; BACTERIA; ADHESION;
D O I
10.1016/j.oceram.2022.100234
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The present study investigates the consequences of incorporation (30 vol %) of piezoelectric Na0.5K0.5NbO3 (NKN) and BaTiO3 (BT) phases and surface polarization (20 kV at 500 degrees C) on in-vitro antibacterial and cellular response of borate bioactive glass (1393B3, BBG). XPS analyses elucidated that the surface chemistry of opti-mally processed composites remains unaffected after surface polarization treatment. The piezoelectric BT and NKN enhance the antibacterial activity of BBG by -(53, 57%) and (51, 54%) for E. coli and S. aureus bacteria stains, respectively. The SEM images of bacteria, adhered on unpolarized and polarized surfaces demonstrate bacteria specific response. The combined action of piezoelectric phase and surface polarization increases the growth rate of osteoblast like MG-63 cells on negatively polarized BBG-BT (30 vol %) and BBG-NKN (30 vol%) composites by -76 and 82% respectively. Overall, the piezoelectric secondary phase incorporated in BBG as well as surface polarization increases the cellular and antibacterial response significantly.
引用
收藏
页数:19
相关论文
共 74 条
  • [1] Enhanced Antibacterial Activity of Nanocrystalline ZnO Due to Increased ROS-Mediated Cell Injury
    Applerot, Guy
    Lipovsky, Anat
    Dror, Rachel
    Perkas, Nina
    Nitzan, Yeshayahu
    Lubart, Rachel
    Gedanken, Aharon
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (06) : 842 - 852
  • [2] Bioactive glasses - When glass science and technology meet regenerative medicine
    Baino, Francesco
    [J]. CERAMICS INTERNATIONAL, 2018, 44 (13) : 14953 - 14966
  • [3] Ion Release, Hydroxyapatite Conversion, and Cytotoxicity of Boron-Containing Bioactive Glass Scaffolds
    Balasubramanian, Preethi
    Gruenewald, Alina
    Detsch, Rainer
    Hupa, Leena
    Jokic, Bojan
    Tallia, Francesca
    Solanki, Anu K.
    Jones, Julian R.
    Boccaccini, Aldo R.
    [J]. INTERNATIONAL JOURNAL OF APPLIED GLASS SCIENCE, 2016, 7 (02) : 206 - 215
  • [4] BEAUCHAMP C, 1970, J BIOL CHEM, V245, P4641
  • [5] Broad-spectrum bactericidal activity of Ag2O-doped bioactive glass
    Bellantone, M
    Williams, HD
    Hench, LL
    [J]. ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2002, 46 (06) : 1940 - 1945
  • [6] Berridge MV, 2005, BIOTECHNOL ANN REV, V11, P127, DOI 10.1016/S1387-2656(05)11004-7
  • [7] Structures of gram-negative cell walls and their derived membrane vesicles
    Beveridge, TJ
    [J]. JOURNAL OF BACTERIOLOGY, 1999, 181 (16) : 4725 - 4733
  • [8] Evaluation of bone regeneration, angiogenesis, and hydroxyapatite conversion in critical-sized rat calvarial defects implanted with bioactive glass scaffolds
    Bi, Lianxiang
    Jung, Steve
    Day, Delbert
    Neidig, Katie
    Dusevich, Vladimir
    Eick, David
    Bonewald, Lynda
    [J]. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2012, 100A (12) : 3267 - 3275
  • [9] Enhanced corrosion resistance and in-vitro biodegradation of plasma electrolytic oxidation coatings prepared on AZ91 Mg alloy using ZnO nanoparticles-incorporated electrolyte
    Bordbar-Khiabani, Aidin
    Yarmand, Benyamin
    Mozafari, Masoud
    [J]. SURFACE & COATINGS TECHNOLOGY, 2019, 360 : 153 - 171
  • [10] Facile and Versatile Modification of Cotton Fibers for Persistent Antibacterial Activity and Enhanced Hygroscopicity
    Cai, Qiuquan
    Yang, Shuliang
    Zhang, Chao
    Li, Zimeng
    Li, Xiaodong
    Shen, Zhiquan
    Zhu, Weipu
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (44) : 38506 - 38516