HOMOTOPY NILPOTENCY OF LOCALIZED SPHERES AND PROJECTIVE SPACES

被引:1
作者
Golasinski, Marek [1 ]
机构
[1] Univ Warmia & Mazury, Fac Math & Comp Sci, Stoneczna 54 St, PL-10710 Olsztyn, Poland
关键词
A(m)-space; H-fibration; homogenous space; homotopy fibre; homotopy nilpotency class; H-space; loop space; Morava K-theory; p-completion; p-localization; projective space; p-localized sphere; suspension space;
D O I
10.1017/S0013091521000274
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For the p-localized sphere S-p(2m-1) with p > 3 a prime, we prove that the homotopy nilpotency satisfies nil S-(p)(2m-1) < infinity, with respect to any homotopy associative H-structure on S-(p)(2m-1) . We also prove that nil S-(p)(2m-1) = 1 for all but a finite number of primes p > 3. Then, for the loop space of the associated S-(p)(2m-1) -projective space S-(p)(2m-1) P(n - 1), with m, n >= 2 and m vertical bar p - 1, we derive that nil Omega(S-(p)(2m-1) P (n - 1)) <= 3.
引用
收藏
页码:501 / 512
页数:12
相关论文
共 22 条
[1]   ON THE NON-EXISTENCE OF ELEMENTS OF HOPF INVARIANT ONE [J].
ADAMS, JF .
ANNALS OF MATHEMATICS, 1960, 72 (01) :20-109
[2]   SPHERE, CONSIDERED AS AN H-SPACE MOD P [J].
ADAMS, JF .
QUARTERLY JOURNAL OF MATHEMATICS, 1961, 12 (45) :52-&
[3]  
[Anonymous], 1963, Trans. Am. Math. Soc.
[4]   H-STRUCTURES ON LOCALIZED AND COMPLETED SPHERES [J].
ARKOWITZ, M ;
EWING, J ;
SCHIFFMAN, S .
QUARTERLY JOURNAL OF MATHEMATICS, 1975, 26 (103) :295-307
[5]  
Arkowitz M., 2011, Introduction to Homotopy Theory, Universitext
[6]  
Berstein I., 1961, ILLINOIS J MATH, V5, P99
[7]  
Copeland A.H., 1959, Mich. Math. J., V6, P7
[8]  
GANEA T, 1967, J MATH MECH, V16, P853
[9]   Homotopy nilpotency of some homogeneous spaces [J].
Golasinski, Marek .
MANUSCRIPTA MATHEMATICA, 2022, 167 (1-2) :245-261
[10]  
Gray B, 1989, Contemp. Math., V96, P181