Hochschild cohomology of Fermat type polynomials with non-abelian symmetries

被引:2
|
作者
Basalaev, Alexey [1 ,2 ]
Ionov, Andrei [1 ,3 ]
机构
[1] Natl Res Univ Higher Sch Econ, Fac Math, Usacheva Str 6, Moscow 119048, Russia
[2] Skolkovo Inst Sci & Technol, Nobelya Str 3, Moscow 121205, Russia
[3] MIT, Dept Math, 77 Massachusetts Ave, Cambridge, MA 02139 USA
基金
俄罗斯科学基金会;
关键词
Hochschild cohomology; Frobenius algebras; Singularities with symmetries;
D O I
10.1016/j.geomphys.2021.104450
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a polynomial f = x(1)(n) + ... + x(N)(n) let G(f) be the non-abelian maximal group of symmetries of f. This is a group generated by all g is an element of GL(N, C), rescaling and permuting the variables, so that f(x) = f(g . x). For any G subset of G(f) we compute explicitly Hochschild cohomology of the category of G-equivariant matrix factorizations of f. We introduce the pairing on it showing that it is a Frobenius algebra. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:28
相关论文
共 50 条