Residually solvable extensions of pro-nilpotent Leibniz superalgebras

被引:2
|
作者
Maria Camacho, Luisa [1 ]
Maria Navarro, Rosa [2 ]
Omirov, Bakhrom A. [3 ]
机构
[1] Univ Seville, Dept Matemat Aplicada 1, Seville, Spain
[2] Univ Extremadura, Dept Matemat, Caceres, Spain
[3] AKFA Univ, Natl Univ Uzbekistan, Tashkent, Uzbekistan
关键词
Solvable Lie superalgebras; Solvable Leibniz superalgebras; Residually solvable Leibniz algebra; Pro-nilpotent superalgebra; Superderivation; Residually nilpotent superderivation; GRADED LIE-ALGEBRAS; CLASSIFICATION; DEFORMATIONS; GROWTH;
D O I
10.1016/j.geomphys.2021.104414
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Throughout this paper we show that the method for describing finite-dimensional solvable Leibniz superalgebras with a given nilradical can be extended to infinite-dimensional ones, or so-called residually solvable Leibniz superalgebras. Prior to that, we improve the solvable extension method for the finite-dimensional case obtaining new and important results. Additionally, we fully determine the residually solvable Lie and Leibniz superalgebras with maximal codimension of pro-nilpotent ideals the model filiform Lie and null-filiform Leibniz superalgebras, respectively. Moreover, we prove that the residually solvable superalgebras obtained are complete. (C) 2021 The Authors. Published by Elsevier B.V.
引用
收藏
页数:13
相关论文
共 15 条
  • [1] Central extensions of some solvable Leibniz superalgebras
    Camacho, L. M.
    Navarro, R. M.
    Omirov, B. A.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 656 : 63 - 91
  • [2] Residually solvable extensions of an infinite dimensional filiform Leibniz algebra
    Abdurasulov, K. K.
    Omirov, B. A.
    Rakhimov, I. S.
    Solijanova, G. O.
    JOURNAL OF ALGEBRA, 2021, 585 : 697 - 722
  • [3] On solvable Lie and Leibniz superalgebras with maximal codimension of nilradical
    Camacho, L. M.
    Navarro, R. M.
    Omirov, B. A.
    JOURNAL OF ALGEBRA, 2022, 591 : 500 - 522
  • [4] Solvable Lie and Leibniz superalgebras with a given nilradical
    Maria Camacho, Luisa
    Fernandez Barroso, Jose Manuel
    Maria Navarro, Rosa
    FORUM MATHEMATICUM, 2020, 32 (05) : 1271 - 1288
  • [5] Local Superderivations on Solvable Lie and Leibniz Superalgebras
    Camacho, Luisa Maria
    Navarro, Rosa Maria
    Omirov, Bakhrom
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (02)
  • [6] COMPLEX NILPOTENT LEIBNIZ SUPERALGEBRAS WITH NILINDEX EQUAL TO DIMENSION
    Camacho, L. M.
    Gomez, J. R.
    Omirov, B. A.
    Khudoyberdiyev, A. Kh
    COMMUNICATIONS IN ALGEBRA, 2013, 41 (07) : 2720 - 2735
  • [7] Right and left solvable extensions of an associative Leibniz algebra
    Shabanskaya, A.
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (06) : 2633 - 2661
  • [8] SOLVABLE INDECOMPOSABLE EXTENSIONS OF TWO NILPOTENT LIE ALGEBRAS
    Shabanskaya, A.
    COMMUNICATIONS IN ALGEBRA, 2016, 44 (08) : 3626 - 3667
  • [9] Cohomologically rigid solvable Lie superalgebras with model filiform and model nilpotent nilradical
    Bouarroudj, S.
    Navarro, R. M.
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (12) : 5061 - 5072
  • [10] Solvable extensions of the naturally graded quasi-filiform Leibniz algebras
    Abdurasulov, K. K.
    Adashev, J. Q.
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (02) : 510 - 527