A new wind-farm parameterization for large-scale atmospheric models

被引:73
作者
Abkar, Mahdi [1 ]
Porte-Agel, Fernando [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Wind Engn & Renewable Energy Lab WIRE, EPFL ENAC IIE WIRE, CH-1015 Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
DEPENDENT DYNAMIC-MODEL; LARGE-EDDY SIMULATIONS; BOUNDARY-LAYER; TURBINE WAKES; POWER OUTPUT; TURBULENCE;
D O I
10.1063/1.4907600
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this article, a new model is developed to parameterize the effect of wind farms in large-scale atmospheric models such as weather models. In the new model, wind turbines in a wind farm are parameterized as elevated sinks of momentum and sources of turbulence. An analytical approach is used to estimate the turbine-induced forces as well as the turbulent kinetic energy (TKE) generated by the turbines inside the atmospheric boundary layer (ABL). In addition, the proposed model can take into account not only the effect of wind-farm density but also the effect of wind-farm layout and wind direction. The performance of the new model is tested with large-eddy simulations of ABL flows over very large wind farms with different turbine configurations. The results show that the new model is capable to accurately predict the turbine-induced forces as well as the TKE generated by the turbines inside the ABL. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:12
相关论文
共 40 条
[1]   Mean and turbulent kinetic energy budgets inside and above very large wind farms under conventionally-neutral condition [J].
Abkar, Mahdi ;
Porte-Agel, Fernando .
RENEWABLE ENERGY, 2014, 70 :142-152
[2]   The Effect of Free-Atmosphere Stratification on Boundary-Layer Flow and Power Output from Very Large Wind Farms [J].
Abkar, Mahdi ;
Porte-Agel, Fernando .
ENERGIES, 2013, 6 (05) :2338-2361
[3]   Surface length scales and shear stress: Implications for land-atmosphere interaction over complex terrain [J].
Albertson, JD ;
Parlange, MB .
WATER RESOURCES RESEARCH, 1999, 35 (07) :2121-2132
[4]   Weather response to a large wind turbine array [J].
Barrie, D. B. ;
Kirk-Davidoff, D. B. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (02) :769-775
[5]   Quantifying the Impact of Wind Turbine Wakes on Power Output at Offshore Wind Farms [J].
Barthelmie, R. J. ;
Pryor, S. C. ;
Frandsen, S. T. ;
Hansen, K. S. ;
Schepers, J. G. ;
Rados, K. ;
Schlez, W. ;
Neubert, A. ;
Jensen, L. E. ;
Neckelmann, S. .
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2010, 27 (08) :1302-1317
[6]  
Blahak U., 2010, EWEC C, P186
[7]  
Burton T., 2001, Wind Energy Handbook
[8]   Experimental study of the horizontally averaged flow structure in a model wind-turbine array boundary layer [J].
Cal, Raul Bayoan ;
Lebron, Jose ;
Castillo, Luciano ;
Kang, Hyung Suk ;
Meneveau, Charles .
JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2010, 2 (01)
[9]   Large eddy simulation study of scalar transport in fully developed wind-turbine array boundary layers [J].
Calaf, Marc ;
Parlange, Marc B. ;
Meneveau, Charles .
PHYSICS OF FLUIDS, 2011, 23 (12)
[10]   Large eddy simulation study of fully developed wind-turbine array boundary layers [J].
Calaf, Marc ;
Meneveau, Charles ;
Meyers, Johan .
PHYSICS OF FLUIDS, 2010, 22 (01) :1-16