Some New Hermite-Hadamard-Fejer Fractional Type Inequalities for h-Convex and Harmonically h-Convex Interval-Valued Functions

被引:27
|
作者
Kalsoom, Humaira [1 ]
Latif, Muhammad Amer [2 ]
Khan, Zareen A. [3 ]
Vivas-Cortez, Miguel [4 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] King Faisal Univ, Dept Basic Sci, Al Hufuf 31982, Al Hasa, Saudi Arabia
[3] Princess Nourah Bint Abdulrahman Univ, Dept Math Sci, Coll Sci, POB 84428, Riyadh 11671, Saudi Arabia
[4] Pontificia Univ Catolica Ecuador, Fac Ciencias Nat & Exactas, Escuela Ciencias Fis & Matemat, Sede Quito 17012184, Ecuador
关键词
weighted interval-valued fractional operators; h-convex interval-valued functions; h-harmonically convex interval-valued functions; weighted interval-valued Hermite-Hadamard type inequality; VARIABLE-ORDER;
D O I
10.3390/math10010074
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, firstly, we establish a novel definition of weighted interval-valued fractional integrals of a function Upsilon using an another function & thetasym;(zeta). As an additional observation, it is noted that the new class of weighted interval-valued fractional integrals of a function Upsilon by employing an additional function & thetasym;(zeta) characterizes a variety of new classes as special cases, which is a generalization of the previous class. Secondly, we prove a new version of the Hermite-Hadamard-Fejer type inequality for h-convex interval-valued functions using weighted interval-valued fractional integrals of a function Upsilon according to another function & thetasym;(zeta). Finally, by using weighted interval-valued fractional integrals of a function Upsilon according to another function & thetasym;(zeta), we are establishing a new Hermite-Hadamard-Fejer type inequality for harmonically h-convex interval-valued functions that is not previously known. Moreover, some examples are provided to demonstrate our results.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Hermite-Hadamard and Schur-Type Inequalities for Strongly h-Convex Fuzzy Interval Valued Functions
    Yang, Putian
    Zhang, Shiqing
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [22] New Hadamard Type Inequalities for Modified h-Convex Functions
    Breaz, Daniel
    Yildiz, Cetin
    Cotirla, Luminita-Ioana
    Rahman, Gauhar
    Yergoz, Busra
    FRACTAL AND FRACTIONAL, 2023, 7 (03)
  • [23] Weighted Midpoint Hermite-Hadamard-Fejer Type Inequalities in Fractional Calculus for Harmonically Convex Functions
    Kalsoom, Humaira
    Vivas-Cortez, Miguel
    Amer Latif, Muhammad
    Ahmad, Hijaz
    FRACTAL AND FRACTIONAL, 2021, 5 (04)
  • [24] Hermite-Hadamard Type Inequalities for h-Convex Functions Via Generalized Fractional Integrals
    Ali, M. Aamir
    Budak, H.
    Abbas, M.
    Sarikaya, M. Z.
    Kashuri, A.
    JOURNAL OF MATHEMATICAL EXTENSION, 2020, 14 (04) : 187 - 234
  • [25] HERMITE-HADAMARD INEQUALITIES OF CONFORMABLE FRACTIONAL INTEGRALS FOR STRONGLY H-CONVEX FUNCTIONS
    Xia, Shengze
    Xing, Yi
    Wan, Jianan
    Lu, Jiaying
    Ruan, Jianmiao
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (06): : 3610 - 3638
  • [26] On new inequalities of Hermite-Hadamard-Fejer type for convex functions via fractional integrals
    Set, Erhan
    Iscan, Imdat
    Sarikaya, M. Zeki
    Ozdemir, M. Emin
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 259 : 875 - 881
  • [27] On the Hermite-Hadamard Inequalities for h-Convex Functions on Balls and Ellipsoids
    Wang, Xiaoqian
    Ruan, Jianmiao
    Ma, Xinsheng
    FILOMAT, 2019, 33 (18) : 5871 - 5886
  • [28] SOME NEW INEQUALITIES OF HERMITE-HADAMARD TYPE FOR h-CONVEX FUNCTIONS ON THE CO-ORDINATES VIA FRACTIONAL INTEGRALS
    Set, Erhan
    Sarikaya, M. Zeki
    Ogulmus, Hatice
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2014, 29 (04): : 397 - 414
  • [29] Hermite-Hadamard-Fejer Type Inequalities for Harmonically Quasi-convex Functions via Fractional Integrals
    Iscan, Imdat
    Kunt, Mehmet
    KYUNGPOOK MATHEMATICAL JOURNAL, 2016, 56 (03): : 845 - 859
  • [30] Further Hermite-Hadamard Type Inequalities Involving Operator h-Convex Functions
    Raissouli, Mustapha
    Tarik, Lahcen
    Chergui, Mohamed
    El Wahbi, Bouazza
    FILOMAT, 2022, 36 (18) : 6333 - 6346