Some New Hermite-Hadamard-Fejer Fractional Type Inequalities for h-Convex and Harmonically h-Convex Interval-Valued Functions

被引:27
|
作者
Kalsoom, Humaira [1 ]
Latif, Muhammad Amer [2 ]
Khan, Zareen A. [3 ]
Vivas-Cortez, Miguel [4 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] King Faisal Univ, Dept Basic Sci, Al Hufuf 31982, Al Hasa, Saudi Arabia
[3] Princess Nourah Bint Abdulrahman Univ, Dept Math Sci, Coll Sci, POB 84428, Riyadh 11671, Saudi Arabia
[4] Pontificia Univ Catolica Ecuador, Fac Ciencias Nat & Exactas, Escuela Ciencias Fis & Matemat, Sede Quito 17012184, Ecuador
关键词
weighted interval-valued fractional operators; h-convex interval-valued functions; h-harmonically convex interval-valued functions; weighted interval-valued Hermite-Hadamard type inequality; VARIABLE-ORDER;
D O I
10.3390/math10010074
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, firstly, we establish a novel definition of weighted interval-valued fractional integrals of a function Upsilon using an another function & thetasym;(zeta). As an additional observation, it is noted that the new class of weighted interval-valued fractional integrals of a function Upsilon by employing an additional function & thetasym;(zeta) characterizes a variety of new classes as special cases, which is a generalization of the previous class. Secondly, we prove a new version of the Hermite-Hadamard-Fejer type inequality for h-convex interval-valued functions using weighted interval-valued fractional integrals of a function Upsilon according to another function & thetasym;(zeta). Finally, by using weighted interval-valued fractional integrals of a function Upsilon according to another function & thetasym;(zeta), we are establishing a new Hermite-Hadamard-Fejer type inequality for harmonically h-convex interval-valued functions that is not previously known. Moreover, some examples are provided to demonstrate our results.
引用
收藏
页数:22
相关论文
共 50 条
  • [11] On Some New Inequalities of Hadamard Type for h-Convex Functions
    Akdemir, Ahmet Ocak
    Set, Erhan
    Ozdemir, M. Emin
    Yildiz, Cetin
    FIRST INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2012), 2012, 1470 : 35 - 38
  • [12] FEJER AND HERMITE-HADAMARD TYPE INEQUALITIES FOR DIFFERENTIABLE h-CONVEX AND QUASI CONVEX FUNCTIONS WITH APPLICATIONS
    OBEIDAT, S. O. F. I. A. N.
    LATIF, M. A.
    DRAGOMIR, S. S.
    MISKOLC MATHEMATICAL NOTES, 2022, 23 (01) : 401 - 415
  • [13] Some Hermite-Hadamard Type Inequalities for h-Convex Functions and their Applications
    Ogulmus, Hatice
    Sarikaya, Mehmet Zeki
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2020, 44 (03): : 813 - 819
  • [14] ON NEW HERMITE-HADAMARD-FEJER TYPE INEQUALITIES FOR HARMONICALLY QUASI CONVEX FUNCTIONS
    Turhan, Sercan
    Iscan, Imdat
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2019, 68 (01): : 734 - 749
  • [15] On new inequalities of Hermite-Hadamard-Fejer type for harmonically convex functions via fractional integrals
    Kunt, Mehmet
    Iscan, Imdat
    Yazici, Nazli
    Gozutok, Ugur
    SPRINGERPLUS, 2016, 5
  • [17] ON SOME NEW INEQUALITIES OF HADAMARD TYPE INVOLVING h-CONVEX FUNCTIONS
    Sarikaya, M. Z.
    Set, E.
    Ozdemir, M. E.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2010, 79 (02): : 265 - 272
  • [18] ON SOME HERMITE-HADAMARD-FEJER INEQUALITIES FOR (k, h)-CONVEX FUNCTIONS
    Micherda, Bartosz
    Rajba, Teresa
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2012, 15 (04): : 931 - 940
  • [19] Some integral inequalities for harmonically h-convex functions
    Noor, M. Aslam
    Noor, K. Inayat
    Awan, M. Uzair
    Costache, Simona
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2015, 77 (01): : 5 - 16
  • [20] SOME INTEGRAL INEQUALITIES FOR HARMONICALLY h-CONVEX FUNCTIONS
    Noor, M. Aslam
    Noor, K. Inayat
    Awan, M. Uzair
    Costache, Simona
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2015, 77 (01): : 5 - 16