Extensions of simple modules over Leavitt path algebras

被引:15
作者
Abrams, Gene [1 ]
Mantese, Francesca [2 ]
Tonolo, Alberto [3 ]
机构
[1] Univ Colorado, Dept Math, Colorado Springs, CO 80918 USA
[2] Univ Verona, Dipartimento Informat, I-87134 Verona, Italy
[3] Univ Padua, Dipartimento Matemat, I-35121 Padua, Italy
关键词
Leavitt path algebra; Chen simple module; GRAPH;
D O I
10.1016/j.jalgebra.2015.01.034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E be a directed graph, K any field, and let L-K(E) denote the Leavitt path algebra of E with coefficients in K. For each rational infinite path c(infinity) of E we explicitly construct a projective resolution of the corresponding Chen simple left L-K(E)-module V-[c infinity] Further, when E is row-finite, for each irrational infinite path p of E we explicitly construct a projective resolution of the corresponding Chen simple left L-K(E)-module V-[p]. For Chen simple modules S,T we describe Ext(Lk(E)(1))S,T) by presenting an explicit K-basis. For any graph E containing at least one cycle, this description guarantees the existence of indecomposable left L-K(E)-modules of any prescribed finite length. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:78 / 106
页数:29
相关论文
共 8 条
[1]   The Leavitt path algebra of a graph [J].
Abrams, G ;
Pino, GA .
JOURNAL OF ALGEBRA, 2005, 293 (02) :319-334
[2]  
Abrams G., LECT NOTES SERIES MA
[3]   Nonstable K-theory for graph algebras [J].
Ara, P. ;
Moreno, M. A. ;
Pardo, E. .
ALGEBRAS AND REPRESENTATION THEORY, 2007, 10 (02) :157-178
[4]   Finitely presented simple modules over Leavitt path algebras [J].
Ara, Pere ;
Rangaswamy, Kulumani M. .
JOURNAL OF ALGEBRA, 2014, 417 :333-352
[5]  
Pino GA, 2010, REV MAT IBEROAM, V26, P611
[6]   Irreducible representations of Leavitt path algebras [J].
Chen, Xiao-Wu .
FORUM MATHEMATICUM, 2015, 27 (01) :549-574
[7]  
Levy LS, 2011, MATH SURVEYS MONOGRA, V174
[8]  
Weibel C. A., 1995, Cambridge Studies in Advanced Mathematics, V38