Video Action Understanding

被引:17
作者
Hutchinson, Matthew S. [1 ]
Gadepally, Vijay N. [1 ]
机构
[1] MIT, Lincoln Lab, Supercomp Ctr, 244 Wood St, Lexington, MA 02173 USA
关键词
Proposals; Tutorials; Deep learning; Measurement; Task analysis; Spatiotemporal phenomena; Data models; Action detection; action localization; action prediction; action proposal; action recognition; action understanding; video understanding; ACTION RECOGNITION;
D O I
10.1109/ACCESS.2021.3115476
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Many believe that the successes of deep learning on image understanding problems can be replicated in the realm of video understanding. However, due to the scale and temporal nature of video, the span of video understanding problems and the set of proposed deep learning solutions is arguably wider and more diverse than those of their 2D image siblings. Finding, identifying, and predicting actions are a few of the most salient tasks in this emerging and rapidly evolving field. With a pedagogical emphasis, this tutorial introduces and systematizes fundamental topics, basic concepts, and notable examples in supervised video action understanding. Specifically, we clarify a taxonomy of action problems, catalog and highlight video datasets, describe common video data preparation methods, present the building blocks of state-of-the-art deep learning model architectures, and formalize domain-specific metrics to baseline proposed solutions. This tutorial is intended to be accessible to a general computer science audience and assumes a conceptual understanding of supervised learning.
引用
收藏
页码:134611 / 134637
页数:27
相关论文
共 261 条
[41]  
Corona K, P IEEE WINT C APPL C, P1060
[42]   MARS: Motion-Augmented RGB Stream for Action Recognition [J].
Crasto, Nieves ;
Weinzaepfel, Philippe ;
Alahari, Karteek ;
Schmid, Cordelia .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :7874-7883
[43]  
Cuzzolin F., 2017, ARXIV170707213
[44]  
Damen D., ARXIV200613256
[45]   Scaling Egocentric Vision: The EPIC-KITCHENS Dataset [J].
Damen, Dima ;
Doughty, Hazel ;
Farinella, Giovanni Maria ;
Fidler, Sanja ;
Furnari, Antonino ;
Kazakos, Evangelos ;
Moltisanti, Davide ;
Munro, Jonathan ;
Perrett, Toby ;
Price, Will ;
Wray, Michael .
COMPUTER VISION - ECCV 2018, PT IV, 2018, 11208 :753-771
[46]   Modeling temporal structure with LSTM for online action detection [J].
De Geest, Roeland ;
Tuytelaars, Tinne .
2018 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2018), 2018, :1549-1557
[47]   SoccerNet-v2: A Dataset and Benchmarks for Holistic Understanding of Broadcast Soccer Videos [J].
Deliege, Adrien ;
Cioppa, Anthony ;
Giancola, Silvio ;
Seikavandi, Meisam J. ;
Dueholm, Jacob, V ;
Nasrollahi, Kamal ;
Ghanem, Bernard ;
Moeslund, Thomas B. ;
Van Droogenbroeck, Marc .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2021, 2021, :4503-4514
[48]  
Demir U, P 25 INT C PATT REC, P7387
[49]   Large Scale Holistic Video Understanding [J].
Diba, Ali ;
Fayyaz, Mohsen ;
Sharma, Vivek ;
Paluri, Manohar ;
Gall, Jurgen ;
Stiefelhagen, Rainer ;
Van Gool, Luc .
COMPUTER VISION - ECCV 2020, PT V, 2020, 12350 :593-610
[50]  
Donahue J, 2015, PROC CVPR IEEE, P2625, DOI 10.1109/CVPR.2015.7298878