A survey of method's for computing (un)stable manifold of vector fields

被引:188
作者
Krauskopf, B
Osinga, HM
Doedel, EJ
Henderson, ME
Guckenheimer, J
Vladimirsky, A
Dellnitz, M
Junge, O
机构
[1] Univ Bristol, Dept Engn Math, Bristol BS8 1TR, Avon, England
[2] Concordia Univ, Dept Comp Sci, Montreal, PQ H3G 1M8, Canada
[3] IBM Res, Yorktown Hts, NY 10598 USA
[4] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
[5] Univ Paderborn, Inst Math, D-33095 Paderborn, Germany
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2005年 / 15卷 / 03期
关键词
stable and unstable manifolds; numerical methods; Lorenz equations;
D O I
10.1142/S0218127405012533
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The computation of global invariant manifolds has seen renewed interest in recent years. We survey different approaches for computing a global table or unstable manifold of a vector field, where we concentrate on the case of a two-dimensional manifold. All methods are illustrated with the same example - the two-dimensional stable manifold of the origin in the Lorenz system.
引用
收藏
页码:763 / 791
页数:29
相关论文
共 58 条
  • [1] Abraham R., 1985, DYNAMICS GEOMETRY BE
  • [2] ALLGOWER EL, 1996, HDB NUMERICAL ANAL, V5, P3
  • [3] [Anonymous], 1995, NUMERICAL SOLUTION B
  • [4] [Anonymous], 2000, AUTO2000 CONTINUATIO
  • [5] BACK A, 1992, NOT AM MATH SOC, V39, P303
  • [6] Beyn W.-J., 2002, HDB DYNAMICAL SYSTEM, V2, P149, DOI [DOI 10.1016/S1874-575X, DOI 10.1016/S1874-575X(02)80025-X]
  • [7] COLLOCATION AT GAUSSIAN POINTS
    DEBOOR, C
    SWARTZ, B
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (04) : 582 - 606
  • [8] A subdivision algorithm for the computation of unstable manifolds and global attractors
    Dellnitz, M
    Hohmann, A
    [J]. NUMERISCHE MATHEMATIK, 1997, 75 (03) : 293 - 317
  • [9] Dellnitz M, 2001, ERGODIC THEORY, ANALYSIS, AND EFFICIENT SIMULATION OF DYNAMICAL SYSTEMS, P145
  • [10] Exploring invariant sets and invariant measures
    Dellnitz, M
    Hohmann, A
    Junge, O
    Rumpf, M
    [J]. CHAOS, 1997, 7 (02) : 221 - 228