Microstructure evolution and mechanical property response via 3D printing parameter development of Al-Sc alloy

被引:125
作者
Kuo, C. N. [1 ,2 ]
Chua, C. K. [3 ]
Peng, P. C. [1 ]
Chen, Y. W. [4 ,5 ]
Sing, S. L. [6 ]
Huang, S. [6 ]
Su, Y. L. [2 ]
机构
[1] Asia Univ, Dept Bioinformat & Med Engn, Taichung, Taiwan
[2] Asia Univ, Printing Med Res Inst 3D, Taichung, Taiwan
[3] Singapore Univ Technol & Design, Engn Prod Dev, Singapore, Singapore
[4] China Med Univ Hosp, Printing Med Res Ctr 3D, Taichung, Taiwan
[5] China Med Univ, Grad Inst Biomed Sci, Taichung, Taiwan
[6] Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore Ctr 3D Printing, Singapore, Singapore
基金
新加坡国家研究基金会;
关键词
Powder bed fusion; selective laser melting; additive manufacturing; Al-Sc alloy; mechanical property; METAL-MATRIX NANOCOMPOSITES; TOPOLOGICAL DESIGN; ORTHOPEDIC IMPLANTS; POROUS METALS; LASER; TI-6AL-4V; FABRICATION; SCAFFOLDS; STRENGTH; MODELS;
D O I
10.1080/17452759.2019.1698967
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Three-dimensional (3D) printed Sc-modified Al alloy by powder bed fusion (PBF) provides significant strength and ductility without hot tearing during the process. This kind of 3D-printable high specific strength materials exhibits great potential in lightweight applications. Due to the lesser design limitation through the 3D printing process, the degree of lightweight is greatly affected by the specific strength of the materials. Hence, to further improve the mechanical properties of the material through process optimisation or post- treatment is of great importance. Microstructure feature variations due to different processing parameters are well known for traditional processes and materials. This study explores the parameter-microstructure-performance relationship of 3D printed Sc-modified Al alloys from the perspective of melt pool interactions. According to the stress concentration effect and Hall-Petch effect, the mechanical properties of the 3D printed materials vary greatly depending on the difference in defect size, shape and grain size.
引用
收藏
页码:120 / 129
页数:10
相关论文
共 39 条
[1]   Mechanical Anisotropy Investigated in the Complex SLM-Processed Sc- and Zr-Modified Al-Mg Alloy Microstructure [J].
Best, James P. ;
Maeder, Xavier ;
Michler, Johann ;
Spierings, Adriaan B. .
ADVANCED ENGINEERING MATERIALS, 2019, 21 (03)
[2]   Properties of Ti-6Al-4V non-stochastic lattice structures fabricated via electron beam melting [J].
Cansizoglu, O. ;
Harrysson, O. ;
Cormier, D. ;
West, H. ;
Mahale, T. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 492 (1-2) :468-474
[3]   Microstructure and fracture properties of open-cell porous Ti-6Al-4V with high porosity fabricated by electron beam melting [J].
Chen, S. Y. ;
Kuo, C. N. ;
Su, Y. L. ;
Huang, J. C. ;
Wu, Y. C. ;
Lin, Y. H. ;
Chung, Y. C. ;
Ng, C. H. .
MATERIALS CHARACTERIZATION, 2018, 138 :255-262
[4]  
Chua CK, 2017, 3D PRINTING AND ADDITIVE MANUFACTURING: PRINCIPLES AND APPLICATIONS, P1, DOI 10.1142/10200
[5]  
Chua CK, 2010, RAPID PROTOTYPING: PRINCIPLES AND APPLICATIONS, 3RD EDITION, DOI 10.1142/6665
[6]   Numerical comparison of lattice unit cell designs for medical implants by additive manufacturing [J].
du Plessis, A. ;
Yadroitsava, I. ;
Yadroitsev, I. ;
le Rouxa, S. G. ;
Blaine, D. C. .
VIRTUAL AND PHYSICAL PROTOTYPING, 2018, 13 (04) :266-281
[7]   The topological design of multifunctional cellular metals [J].
Evans, AG ;
Hutchinson, JW ;
Fleck, NA ;
Ashby, MF ;
Wadley, HNG .
PROGRESS IN MATERIALS SCIENCE, 2001, 46 (3-4) :309-327
[8]  
Gibson I, 2010, ADDITIVE MANUFACTURING TECHNOLOGIES: RAPID PROTOTYPING TO DIRECT DIGITAL MANUFACTURING, P1, DOI 10.1007/978-1-4419-1120-9
[9]   THE MECHANICS OF 3-DIMENSIONAL CELLULAR MATERIALS [J].
GIBSON, LJ ;
ASHBY, MF .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1982, 382 (1782) :43-&
[10]   Additive manufacturing of metals [J].
Herzog, Dirk ;
Seyda, Vanessa ;
Wycisk, Eric ;
Emmelmann, Claus .
ACTA MATERIALIA, 2016, 117 :371-392