Existence Theorems for Coincidence Points of f-Contractive Mappings in Cone b-Metric Spaces

被引:0
作者
Anakkamatee, Watcharapong [1 ]
Ungchittrakool, Kasamsuk [1 ,2 ]
机构
[1] Naresuan Univ, Fac Sci, Dept Math, Phitsanulok 65000, Thailand
[2] Naresuan Univ, Res Ctr Acad Excellence Nonlinear Anal & Optimiza, Fac Sci, Phitsanulok 65000, Thailand
来源
THAI JOURNAL OF MATHEMATICS | 2021年 / 19卷 / 04期
关键词
cone b-metric space; f-contractive mapping; coincidence point; fixed point; COMMON FIXED-POINTS; MAPS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, two f-contractive mappings are provided and studied in cone b-metric spaces. The first one is called f-contractive mapping of type B and the second one is called f-contractive mapping of type KC, respectively. Under some available properties on a complete cone b-metric space, some suitable conditions on scalars and the considered two new f-contractive mappings T, we can generate a Cauchy sequence to find and confirm the existence of a coincidence point of f and T without the assumption of normality. The obtained results not only directly improve and generalize some fixed point results in metric spaces and b-metric spaces but also expand and complement some previous results in cone metric spaces.
引用
收藏
页码:1257 / 1266
页数:10
相关论文
共 28 条
  • [1] Common fixed point results for noncommuting mappings without continuity in cone metric spaces
    Abbas, A.
    Jungck, G.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 341 (01) : 416 - 420
  • [2] Fixed and periodic point results in cone metric spaces
    Abbas, Mujahid
    Rhoades, B. E.
    [J]. APPLIED MATHEMATICS LETTERS, 2009, 22 (04) : 511 - 515
  • [3] [Anonymous], 1989, INT J MATH MATH SCI
  • [4] Azam A, 2009, B IRAN MATH SOC, V35, P255
  • [5] Bakhtin I. A., 1989, Funct. Anal., V30, P26, DOI DOI 10.1039/AP9892600037
  • [6] Banach S., 1922, Fund. Math, V1, P133, DOI 10.4064/fm-3-1-133-181
  • [7] Berinde V, 2010, FIXED POINT THEOR-RO, V11, P179
  • [8] Berinde V, 2010, MATH COMMUN, V15, P229
  • [9] Multivalued fractals in b-metric spaces
    Boriceanu, Monica
    Bota, Marius
    Petrusel, Adrian
    [J]. CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2010, 8 (02): : 367 - 377
  • [10] Bota M, 2011, FIXED POINT THEOR-RO, V12, P21