A Machine Learning Approach to False Alarm Detection for Critical Arrhythmia Alarms

被引:18
|
作者
Wang, Xing [1 ]
Gao, Yifeng [1 ]
Lin, Jessica [1 ]
Rangwala, Huzefa [1 ]
Mittu, Ranjeev [2 ]
机构
[1] George Mason Univ, Dept Comp Sci, Fairfax, VA 22030 USA
[2] Naval Res Lab, Washington, DC 20375 USA
来源
2015 IEEE 14TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA) | 2015年
关键词
CARE; ICU;
D O I
10.1109/ICMLA.2015.176
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
High false alarm rates in Intensive Care Unit (ICU) is a common problem that leads to alarm desensitization-a phenomenon called alarm fatigue. Alarm fatigue can cause longer response time or missing of important alarms. In this work, we propose a methodology to identify false alarms generated by ICU bedside monitors. The novelty in our approach lies in the extraction of 216 relevant features to capture the characteristics of all alarms, from both arterial blood pressure (ABP) and electrocardiogram (ECG) signals. Our multivariate approach mitigates the imprecision caused by existing heartbeat/peak detection algorithms. Unlike existing methods on ICU false alarm detection, our approach does not require separate techniques for different types of alarms. The experimental results show that our approach can achieve high accuracy on false alarm detection, and can be generalized for different types of alarms.
引用
收藏
页码:202 / 207
页数:6
相关论文
共 50 条
  • [21] ALARM INDUSTRY IN EVOLUTION - REDUCING FALSE ALARMS
    BERLIN, RJ
    POLICE CHIEF, 1978, 45 (06): : 47 - 48
  • [22] A Diffusion Model with Contrastive Learning for ICU False Arrhythmia Alarm Reduction
    Wu, Feng
    Zhao, Guoshuai
    Qian, Xueming
    Lehman, Li-wei H.
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 4912 - 4920
  • [23] An approach to reduce false alarms in an Intrusion Detection System
    Mohajerani, M
    Moeini, A
    Haydari, H
    SAM '05: Proceedings of the 2005 International Conference on Security and Management, 2005, : 127 - 132
  • [24] Reduction of false alarms in the intensive care unit using an optimized machine learning based approach
    Wan-Tai M. Au-Yeung
    Ashish K. Sahani
    Eric M. Isselbacher
    Antonis A. Armoundas
    npj Digital Medicine, 2
  • [25] Reduction of false alarms in the intensive care unit using an optimized machine learning based approach
    Au-Yeung, Wan-Tai M.
    Sahani, Ashish K.
    Isselbacher, Eric M.
    Armoundas, Antonis A.
    NPJ DIGITAL MEDICINE, 2019, 2 (1)
  • [26] Reducing False Alarm Rates in Neonatal Intensive Care: A New Machine Learning Approach
    Ostojic, D.
    Guglielmini, S.
    Moser, V.
    Fauchere, J. C.
    Bucher, H. U.
    Bassler, D.
    Wolf, M.
    Kleiser, S.
    Scholkmann, F.
    Karen, T.
    OXYGEN TRANSPORT TO TISSUE XLI, 2020, 1232 : 285 - 290
  • [27] Decreasing the False Alarm Rate of Arrhythmias in Intensive Care Using a Machine Learning Approach
    Eerikainen, Linda M.
    Vanschoren, Joaquin
    Rooijakkers, Michael J.
    Vullings, Rik
    Aarts, Ronald M.
    2015 COMPUTING IN CARDIOLOGY CONFERENCE (CINC), 2015, 42 : 293 - 296
  • [28] Deep Learning Based Classification of True/False Arrhythmia Alarms in the Intensive Care Unit
    Boynton, Jack
    Lee, Byung Suk
    2021 COMPUTING IN CARDIOLOGY (CINC), 2021,
  • [29] Reducing false arrhythmia alarms in the ICU using multimodal signals and robust QRS detection
    Sadr, Nadi
    Huvanandana, Jacqueline
    Doan Trang Nguyen
    Kalra, Chandan
    McEwan, Alistair
    de Chazal, Philip
    PHYSIOLOGICAL MEASUREMENT, 2016, 37 (08) : 1340 - 1354
  • [30] Predicting chattering alarms: A machine Learning approach
    Tamascelli, Nicola
    Paltrinieri, Nicola
    Cozzani, Valerio
    COMPUTERS & CHEMICAL ENGINEERING, 2020, 143