Observables and dispersion relations in κ-Minkowski spacetime

被引:22
作者
Aschieri, Paolo [1 ,2 ,3 ]
Borowiec, Andrzej [4 ]
Pachol, Anna [5 ]
机构
[1] Univ Piemonte Orientate, Dipartimento Sci & Innovaz Tecnol, Viale T Michel 11, I-15121 Alessandria, Italy
[2] INFN, Sez Torino, Via P Giuria 1, I-10125 Turin, Italy
[3] Arnold Regge Ctr, Via P Giuria 1, I-10125 Turin, Italy
[4] Univ Wroclaw, Inst Theoret Phys, Pl M Borna 9, PL-50204 Wroclaw, Poland
[5] Queen Mary Univ London, Sch Math, Mile End Rd, London E1 4NS, England
关键词
Non-Commutative Geometry; Quantum Groups; Space-Time Symmetries; DOUBLY SPECIAL RELATIVITY; NONCOMMUTATIVE GEOMETRY; NOETHER THEOREM; POINCARE GROUP; QUANTUM; DEFORMATION; CALCULUS; SYMMETRY;
D O I
10.1007/JHEP10(2017)152
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We revisit the notion of quantum Lie algebra of symmetries of a noncommutative spacetime, its elements are shown to be the generators of infinitesimal transformations and are naturally identified with physical observables. Wave equations on noncommutative spaces are derived from a quantum Hodge star operator. This general noncommutative geometry construction is then exemplified in the case of kappa-Minkowski spacetime. The corresponding quantum Poincare-Weyl Lie algebra of infinitesimal translations, rotations and dilatations is obtained. The d'Alembert wave operator coincides with the quadratic Casimir of quantum translations and it is deformed as in Deformed Special Relativity theories. Also momenta (infinitesimal quantum translations) are deformed, and correspondingly the Einstein-Planck relation and the de Broglie one. The energy-momentum relations (dispersion relations) are consequently deduced. These results complement those of the phenomenological literature on the subject.
引用
收藏
页数:27
相关论文
共 45 条
[1]   Generalizing the Noether theorem for Hopf-algebra spacetime symmetries [J].
Agostini, Alessandra ;
Amelino-Camelia, Giovanni ;
Arzano, Michele ;
Mariano, Antonino ;
Tacchi, Ruggero Altair .
MODERN PHYSICS LETTERS A, 2007, 22 (24) :1779-1786
[2]   Tests of quantum gravity from observations of γ-ray bursts [J].
Amelino-Camelia, G ;
Ellis, J ;
Mavromatos, NE ;
Nanopoulos, DV ;
Sarkar, S .
NATURE, 1998, 393 (6687) :763-765
[3]   Doubly-special relativity: First results and key open problems [J].
Amelino-Camelia, G .
INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2002, 11 (10) :1643-1669
[4]   Testable scenario for relativity with minimum length [J].
Amelino-Camelia, G .
PHYSICS LETTERS B, 2001, 510 (1-4) :255-263
[5]   Principle of relative locality [J].
Amelino-Camelia, Giovanni ;
Freidel, Laurent ;
Kowalski-Glikman, Jerzy ;
Smolin, Lee .
PHYSICAL REVIEW D, 2011, 84 (08)
[6]   Speed of particles and a relativity of locality in κ-Minkowski quantum spacetime [J].
Amelino-Camelia, Giovanni ;
Loret, Niccolo ;
Rosati, Giacomo .
PHYSICS LETTERS B, 2011, 700 (02) :150-156
[7]  
Aschieri Paolo, 2012, International Journal of Modern Physics: Conference Series, V13, P1, DOI 10.1142/S201019451200668X
[8]   AN INTRODUCTION TO NONCOMMUTATIVE DIFFERENTIAL GEOMETRY ON QUANTUM GROUPS [J].
ASCHIERI, P ;
CASTELLANI, L .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1993, 8 (10) :1667-1706
[9]  
Aschieri P, 2009, LECT NOTES PHYS, V774, P1, DOI 10.1007/978-3-540-89793-4
[10]   Vector fields on quantum groups [J].
Aschieri, P ;
Schupp, P .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1996, 11 (06) :1077-1100