Acoustic topology optimization of sound absorbing materials directly from subdivision surfaces with isogeometric boundary element methods

被引:114
作者
Chen, Leilei [1 ]
Lu, Chuang [1 ,4 ]
Lian, Haojie [2 ]
Liu, Zhaowei [3 ]
Zhao, Wenchang [4 ]
Li, Shengze [7 ]
Chen, Haibo [4 ]
Bordas, Stephane P. A. [2 ,5 ,6 ]
机构
[1] Xinyang Normal Univ, Coll Architecture & Civil Engn, Xinyang, Henan, Peoples R China
[2] Univ Luxembourg, Fac Sci Technol & Commun, Inst Computat Engn, Luxembourg, Luxembourg
[3] Univ Glasgow, Glasgow Computat Engn Ctr, Sch Engn, Glasgow, Lanark, Scotland
[4] Univ Sci & Technol China, Dept Modern Mech, CAS Key Lab Mech Behav & Design Mat, Beijing, Peoples R China
[5] Cardiff Univ, Sch Engn, Cardiff CF24 3AA, Wales
[6] China Med Univ, China Med Univ Hosp, Taichung, Taiwan
[7] Natl Innovat Inst Def Technol, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Acoustics; Topology optimization; Isogeometric analysis; Subdivision surface; Boundary element methods; Adjoint variable method; STRUCTURAL SHAPE OPTIMIZATION; DESIGN SENSITIVITY-ANALYSIS; CATMULL-CLARK SUBDIVISION; POLYNOMIAL SPLINES; COMPUTATIONAL DOMAIN; PARAMETERIZATION; IMPLEMENTATION; MINIMIZATION; NURBS; CAD;
D O I
10.1016/j.cma.2019.112806
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents an acoustic topology optimization approach using isogeometric boundary element methods based on subdivision surfaces to optimize the distribution of sound adsorption materials adhering to structural surfaces. The geometries are constructed from triangular control meshes through Loop subdivision scheme, and the associated Box-spline functions that generate limit smooth subdivision surfaces are employed to discretize the acoustic boundary integral equations. The effect of sound-absorbing materials on the acoustic response is characterized by acoustic impedance boundary conditions. The optimization problem is formulated in the framework of Solid Isotropic Material with Penalization methods and the sound absorption coefficients on elements are selected as design variables. The potential of the proposed topology optimization approach for engineering prototyping is illustrated by numerical examples. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:22
相关论文
共 81 条
[1]   Recovery-based error estimation and adaptivity using high-order splines over hierarchical T-meshes [J].
Anitescu, Cosmin ;
Hossain, Md Naim ;
Rabczuk, Timon .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 328 :638-662
[2]  
[Anonymous], 1987, Smooth Subdivision Surfaces Based on Triangles
[3]   Weakening the tight coupling between geometry and simulation in isogeometric analysis: From sub- and super-geometric analysis to Geometry-Independent Field approximaTion (GIFT) [J].
Atroshchenko, Elena ;
Tomar, Satyendra ;
Xu, Gang ;
Bordas, Stephane P. A. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2018, 114 (10) :1131-1159
[4]   Shape optimisation with multiresolution subdivision surfaces and immersed finite elements [J].
Bandara, Kosala ;
Rueberg, Thomas ;
Cirak, Fehmi .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 300 :510-539
[5]   Boundary element based multiresolution shape optimisation in electrostatics [J].
Bandara, Kosala ;
Cirak, Fehmi ;
Of, Guenther ;
Steinbach, Olaf ;
Zapletal, Jan .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 297 :584-598
[6]   Isogeometric analysis using T-splines [J].
Bazilevs, Y. ;
Calo, V. M. ;
Cottrell, J. A. ;
Evans, J. A. ;
Hughes, T. J. R. ;
Lipton, S. ;
Scott, M. A. ;
Sederberg, T. W. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (5-8) :229-263
[7]  
Bendsoe M. P., 2004, Topology optimization: theory, methods, and applications
[8]   APPLICATION OF INTEGRAL EQUATION METHODS TO NUMERICAL SOLUTION OF SOME EXTERIOR BOUNDARY-VALUE PROBLEMS [J].
BURTON, AJ ;
MILLER, GF .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1971, 323 (1553) :201-&
[9]   RECURSIVELY GENERATED B-SPLINE SURFACES ON ARBITRARY TOPOLOGICAL MESHES [J].
CATMULL, E ;
CLARK, J .
COMPUTER-AIDED DESIGN, 1978, 10 (06) :350-355
[10]   Structural shape optimization of three dimensional acoustic problems with isogeometric boundary element methods [J].
Chen, L. L. ;
Lian, H. ;
Liu, Z. ;
Chen, H. B. ;
Atroshchenko, E. ;
Bordas, S. P. A. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 355 :926-951