Data-based ensemble approach for semi-supervised anomaly detection in machine tool condition monitoring

被引:15
作者
Denkena, B. [1 ]
Dittrich, M-A [1 ]
Noske, H. [1 ]
Stoppel, D. [1 ]
Lange, D. [2 ]
机构
[1] Inst Prod Engn & Machine Tools, Univ 2, D-30823 Garbsen, Germany
[2] Marposs Monitoring Solut GmbH, Buchenring 40, D-21272 Egestorf, Germany
关键词
Condition monitoring; Machine learning; Failure; Ball screw; Maintenance; ARTIFICIAL-INTELLIGENCE; PROGNOSTICS; DIAGNOSIS;
D O I
10.1016/j.cirpj.2021.09.003
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Data-based methods are capable to monitor machine components. Approaches for semi-supervised anomaly detection are trained using sensor data that describe the normal state of machine components. Thus, such approaches are interesting for industrial practice, since sensor data do not have to be labeled in a time-consuming and costly way. In this work, an ensemble approach for semi-supervised anomaly detection is used to detect anomalies. It is shown that the ensemble approach is suitable for condition monitoring of ball screws. For the evaluation of the approach, a data set of a regular test cycle of a ball screw from automotive industry is used. (C) 2021 The Author(s).
引用
收藏
页码:795 / 802
页数:8
相关论文
共 50 条
  • [41] Active constraints selection based semi-supervised dimensionality in ensemble subspaces
    Zeng, Jie
    Nie, Wei
    Zhang, Yong
    [J]. JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2015, 26 (05) : 1088 - 1099
  • [42] Evaluation of Semi-Supervised Machine Learning applied to Affective State Detection
    Martin-Melero, Inigo
    Serrano-Mamolar, Ana
    Rodriguez-Diez, Juan J.
    [J]. 2024 IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS WORKSHOPS AND OTHER AFFILIATED EVENTS, PERCOM WORKSHOPS, 2024, : 320 - 325
  • [43] A semi-supervised total electron content anomaly detection method using LSTM-auto-encoder
    Muhammad, Ahmad
    Kuelahci, Fatih
    [J]. JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2022, 241
  • [44] Improving Prostate Biopsy Protocol with a Computer Aided Detection Tool Based on Semi-supervised Learning
    Galluzzo, Francesca
    Testoni, Nicola
    De Marchi, Luca
    Speciale, Nicolo
    Masetti, Guido
    [J]. PROSTATE CANCER IMAGING: IMAGE ANALYSIS AND IMAGE-GUIDED INTERVENTIONS, 2011, 6963 : 109 - +
  • [45] A Supervised Machine Learning Model for Tool Condition Monitoring in Smart Manufacturing
    Ganeshkumar, S.
    Deepika, T.
    Haldorai, Anandakumar
    [J]. DEFENCE SCIENCE JOURNAL, 2022, 72 (05) : 712 - 720
  • [46] Generalizability analysis of tool condition monitoring ensemble machine learning models
    Schueller, Alexandra
    Saldana, Christopher
    [J]. JOURNAL OF MANUFACTURING PROCESSES, 2022, 84 : 1064 - 1075
  • [47] An interpretable semi-supervised system for detecting cyberattacks using anomaly detection in industrial scenarios
    Gomez, Angel Luis Perales
    Maimo, Lorenzo Fernandez
    Celdran, Alberto Huertas
    Clemente, Felix J. Garcia
    [J]. IET INFORMATION SECURITY, 2023, 17 (04) : 553 - 566
  • [48] Enhancing the Safety of Autonomous Vehicles: Semi-Supervised Anomaly Detection With Overhead Fisheye Perspective
    Tsiktsiris, Dimitris
    Lalas, Antonios
    Dasygenis, Minas
    Votis, Konstantinos
    [J]. IEEE ACCESS, 2024, 12 : 68905 - 68915
  • [49] A Semi-Supervised Multi-Scale Deep Adversarial Model for Fan Anomaly Detection
    Wang, Yu
    Yuan, Xiangyu
    Lin, Yanzhuo
    Gu, Junwei
    Zhang, Mingquan
    [J]. IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (01) : 3539 - 3547
  • [50] Machine learning-powered data cleaning for LEGEND: a semi-supervised approach using affinity propagation and support vector machines
    Leon, E.
    Li, A.
    Schott, M. A. Bahena
    Bos, B.
    Busch, M.
    Chapman, J. R.
    Duran, G. L.
    Gruszko, J.
    Henning, R.
    Martin, E. L.
    Wilkerson, J. F.
    [J]. MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2025, 6 (01):