Transient Analysis of a Passive Direct Methanol Fuel Cell Using Pure Methanol

被引:22
作者
Bahrami, Hafez [1 ]
Faghri, Amir [1 ]
机构
[1] Univ Connecticut, Dept Mech Engn, Storrs, CT 06269 USA
基金
美国国家科学基金会;
关键词
WATER CROSSOVER; LIQUID WATER; TRANSPORT; MEMBRANE; MODEL; DMFC; PERFORMANCE; CATHODE; DESIGN; ABSORPTION;
D O I
10.1149/1.3491449
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A two-dimensional, transient, nonisothermal, multifluid, and multicomponent model is developed to evaluate the transient operation of a completely passive direct methanol fuel cell utilizing pure methanol at the fuel cartridge. The model simultaneously considers the mass, species, heat, charge, and dissolved water transport using a single computational domain. A hydrophobic, microporous layer is used at the cathode to facilitate sufficient water recovery from the cathode to the anode. Methanol crossover is directly interconnected to water crossover in such a way that if there is enough back flow of water from the cathode to the anode, methanol solution is sufficiently diluted at the anode catalyst layer and, consequently, methanol crossover is reduced. Although the electro-osmotic force drags substantial amount of water from the anode to the cathode, convective and diffusive mechanisms are employed to force the water back to the anode. A cell using initially water-saturated porous layers at the anode can successfully operate employing pure methanol if a proper water supply from the cathode is provided. It is also revealed that a successful operation of a completely passive cell has a strong dependence on the cell geometry as well as cell operating voltage. (C) 2010 The Electrochemical Society. [DOI: 10.1149/1.3491449] All rights reserved.
引用
收藏
页码:B1762 / B1776
页数:15
相关论文
共 50 条
  • [1] Single passive direct methanol fuel cell supplied with pure methanol
    Feng, Ligang
    Zhang, Jing
    Cai, Weiwei
    Liangliang
    Xing, Wei
    Liu, Changpeng
    JOURNAL OF POWER SOURCES, 2011, 196 (05) : 2750 - 2753
  • [2] Transient behavior analysis of a new designed passive direct methanol fuel cell fed with highly concentrated methanol
    Cai, Weiwei
    Li, Songtao
    Feng, Ligang
    Zhang, Jing
    Song, Datong
    Xing, Wei
    Liu, Changpeng
    JOURNAL OF POWER SOURCES, 2011, 196 (08) : 3781 - 3789
  • [3] Start-up and steady-state operation of a passive vapor-feed direct methanol fuel cell fed with pure methanol
    Bahrami, Hafez
    Faghri, Amir
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (10) : 8641 - 8658
  • [4] Transient investigation of passive alkaline membrane direct methanol fuel cell
    Wang, Bowen
    Zhou, Yibo
    Du, Qing
    Yin, Yan
    Jiao, Kui
    APPLIED THERMAL ENGINEERING, 2016, 100 : 1245 - 1258
  • [5] Transient analysis of a Direct Methanol fuel cell anode
    Adloor, Sai Darshan
    Krishnamurthy, Balaji
    ELECTROCHIMICA ACTA, 2016, 191 : 317 - 328
  • [6] A new structure of a passive direct methanol fuel cell
    Zheng, Wukui
    Suominen, Arho
    Kankaanranta, Jarno
    Tuominen, Aulis
    CHEMICAL ENGINEERING SCIENCE, 2012, 76 : 188 - 191
  • [7] Water management in a passive direct methanol fuel cell
    Oliveira, Vania B.
    Falcao, Daniela S.
    Rangel, Carmen M.
    Pinto, Alexandra M. F. R.
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2013, 37 (09) : 991 - 1001
  • [8] Investigation of cell orientation effect on transient operation of passive direct methanol fuel cells
    Ting, Guo
    Sun, Jing
    Deng, Hao
    Xie, Xu
    Jiao, Kui
    Huang, Xuri
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (15) : 6493 - 6507
  • [9] Exergy analysis of a passive direct methanol fuel cell
    Bahrami, Hafez
    Faghri, Amir
    JOURNAL OF POWER SOURCES, 2011, 196 (03) : 1191 - 1204
  • [10] Vapor-feed direct methanol fuel cells using pure methanol
    Spragg, Ryan
    Li, Xianglin
    ENERGY CONVERSION AND MANAGEMENT-X, 2024, 24