Annular two-phase flow in vertical smooth and corrugated pipes

被引:17
作者
van Eckeveld, A. C. [1 ]
Gotfredsen, E. [2 ]
Westerweel, J. [1 ]
Poelma, C. [1 ]
机构
[1] Delft Univ Technol, Leeghwaterstr 21, NL-2628 CA Delft, Netherlands
[2] Tech Univ Denmark, Nils Koppels Alle,Bldg 403, DK-2800 Lyngby, Denmark
关键词
GAS-LIQUID FLOW; DROPLET ENTRAINMENT; FILM THICKNESS; INSERTS; PATTERN; TUBES; SIZE;
D O I
10.1016/j.ijmultiphaseflow.2018.07.004
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Two-phase flow in ribbed or corrugated pipes is of interest in many industrial applications. Experiments are performed to assess the flow regime characteristics in upward annular flow through vertical smooth and corrugated pipes. From high speed recordings, the flow regime and temporal film characteristics are obtained. A novel implementation of a planar laser-induced fluorescence (PLIF) method is used to measure the film thickness, preventing strong reflections from deteriorating the measurements. Liquid accumulation between the ribs of the corrugated pipe is also measured using a PLIF technique. Furthermore, droplet sizing is performed combining shadowgraphic and interferometric techniques to capture a large droplet size range. The measurements show that the presence of pronounced corrugations at the pipe wall causes a strong increase in entrainment of liquid into the gas flow. The entrainment is correlated to the filling of the corrugations with liquid: it is significantly reduced (from 90% entrainment to 50%) when the corrugations are entirely filled with liquid. The amount of liquid filling of the corrugations is related to the superficial liquid film flow velocity. The liquid filling fraction (alpha) scales with the Weber and liquid Reynolds number, and the obtained scaling also holds when the experiments are repeated with a different liquid (mono-ethylene glycol) and with a larger corrugation geometry. Droplets occurring in corrugated pipe flow are 30-50% larger compared to the smooth pipe, as a consequence of the locally (at the locations of the cavities) increased film thickness. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:150 / 163
页数:14
相关论文
共 36 条
[1]  
Adrian L., 2011, PARTICLE IMAGE VELOC
[2]   Heat transfer augmentation for the flow of a viscous liquid in circular tubes using twisted tape inserts [J].
Agarwal, SK ;
Rao, MR .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1996, 39 (17) :3547-3557
[3]   Two-phase gas-liquid flow regimes for smooth and ribbed rectangular ducts [J].
Ansari, M. R. ;
Arzandi, B. .
INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2012, 38 (01) :118-125
[4]   FURTHER DEVELOPMENTS IN PHOTOGRAPHY OF 2-PHASE GAS-LIQUID FLOW [J].
ARNOLD, CR ;
HEWITT, GF .
JOURNAL OF PHOTOGRAPHIC SCIENCE, 1967, 15 (03) :97-&
[5]  
Azzopardi B.J., 1980, BASIC MECH 2 PHASE F, P1
[6]  
Azzopardi BJ, 1997, INT J MULTIPHAS FLOW, V23, P1
[7]  
Belfroid S. P. C, 2013, P ASME 2013 PRESS VE
[8]   Time and spatially resolved measurements of interfacial waves in vertical annular flow [J].
Belt, R. J. ;
Van't Westende, J. M. C. ;
Prasser, H. M. ;
Portela, L. M. .
INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2010, 36 (07) :570-587
[9]  
Belt R.J., 2007, On the liquid film in inclined annular flow
[10]  
Charogiannis A, 2017, 13 INT C HEAT TRANSF