Size-dependent phase morphologies in LiFePO4 battery particles

被引:43
作者
Cogswell, Daniel A. [1 ]
Bazant, Martin Z. [1 ,2 ]
机构
[1] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[2] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
Lithium iron phosphate; Two-phase equilibrium; Coherency strain; Phase-field model; Spinodal decomposition; Electro-autocatalysis; ELECTRON-MICROSCOPY; INTERCALATION; SEPARATION; RESOLUTION; KINETICS; TRANSFORMATION; SPECTROSCOPY; SUPPRESSION; TRANSITION; FRACTURE;
D O I
10.1016/j.elecom.2018.08.015
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Lithium iron phosphate (LiFePO4) is the prototypical two-phase battery material whose complex patterns of lithium ion intercalation provide a testing ground for theories of electrochemical thermodynamics. Using a depth-averaged (a-b plane) phase-field model of coherent phase separation driven by Faradaic reactions, we reconcile conflicting experimental observations of diamond-like phase patterns in micron-sized platelets with observations of surface-controlled patterns in nanoparticles. Elastic analysis predicts this morphological transition for particles whose a-axis dimension exceeds twice the bulk elastic stripe period. We also simulate a rich variety of non-equilibrium patterns, influenced by size-dependent spinodal points and electro-autocatalytic control of thermodynamic stability.
引用
收藏
页码:33 / 37
页数:5
相关论文
共 40 条
[1]   Charge transfer kinetics at the solid-solid interface in porous electrodes [J].
Bai, Peng ;
Bazant, Martin Z. .
NATURE COMMUNICATIONS, 2014, 5
[2]   Suppression of Phase Separation in LiFePO4 Nanoparticles During Battery Discharge [J].
Bai, Peng ;
Cogswell, Daniel A. ;
Bazant, Martin Z. .
NANO LETTERS, 2011, 11 (11) :4890-4896
[3]   Thermodynamic stability of driven open systems and control of phase separation by electro-autocatalysis [J].
Bazant, Martin Z. .
FARADAY DISCUSSIONS, 2017, 199 :423-463
[4]   Theory of Chemical Kinetics and Charge Transfer based on Nonequilibrium Thermodynamics [J].
Bazant, Martin Z. .
ACCOUNTS OF CHEMICAL RESEARCH, 2013, 46 (05) :1144-1160
[5]   Mesoscale Phase Distribution in Single Particles of LiFePO4 following Lithium Deintercalation [J].
Boesenberg, Ulrike ;
Meirer, Florian ;
Liu, Yijin ;
Shukla, Alpesh K. ;
Dell'Anna, Rossana ;
Tyliszczak, Tolek ;
Chen, Guoying ;
Andrews, Joy C. ;
Richardson, Thomas J. ;
Kostecki, Robert ;
Cabana, Jordi .
CHEMISTRY OF MATERIALS, 2013, 25 (09) :1664-1672
[6]   Electron microscopy study of the LiFePO4 to FePO4 phase transition [J].
Chen, GY ;
Song, XY ;
Richardson, TJ .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (06) :A295-A298
[7]   Intercalation Pathway in Many-Particle LiFePO4 Electrode Revealed by Nanoscale State-of-Charge Mapping [J].
Chueh, William C. ;
El Gabaly, Farid ;
Sugar, Joshua D. ;
Bartelt, Norman C. ;
McDaniel, Anthony H. ;
Fenton, Kyle R. ;
Zavadil, Kevin R. ;
Tyliszczak, Tolek ;
Lai, Wei ;
McCarty, Kevin F. .
NANO LETTERS, 2013, 13 (03) :866-872
[8]   Theory of Coherent Nucleation in Phase-Separating Nanoparticles [J].
Cogswell, Daniel A. ;
Bazant, Martin Z. .
NANO LETTERS, 2013, 13 (07) :3036-3041
[9]   Coherency Strain and the Kinetics of Phase Separation in LiFePO4 Nanoparticles [J].
Cogswell, Daniel A. ;
Bazant, Martin Z. .
ACS NANO, 2012, 6 (03) :2215-2225
[10]   A Cahn-Hilliard-type phase-field theory for species diffusion coupled with large elastic deformations: Application to phase-separating Li-ion electrode materials [J].
Di Leo, Claudio V. ;
Rejovitzky, Elisha ;
Anand, Lallit .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2014, 70 :1-29