On the Hausdorff dimension of the recurrent sets induced from endomorphisms of free groups

被引:0
作者
Ishii, Yutaka [1 ]
Oka, Tatsuya [2 ]
机构
[1] Kyushu Univ, Dept Math, Nishi Ku, Motooka 744, Fukuoka 8190395, Japan
[2] Fujitsu Ltd, Fujitsu Res, Data & Secur Res Lab, Nakahara Ku, Kawasaki, Kanagawa 2118588, Japan
关键词
Recurrent set; Hausdorff dimension; Markov partition; MARKOV PARTITIONS;
D O I
10.4171/JFG/120
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that F. Dekking's recurrent sets in R-2, which correspond to Markov partitions for conformally expanding maps of the 2-torus, have Hausdorff dimension strictly greater than one. This is a counterpart to the classical result of R. Bowen on the non-smoothness of the Markov partitions for Anosov diffeomorphisms of the 3-torus. We also present a non-conformal example where the recurrent set is a parallelogram and hence its Hausdorff dimension is one.
引用
收藏
页码:171 / 192
页数:22
相关论文
共 9 条
[1]  
[Anonymous], 1968, Funkcional. Anal. i Prilozen.
[2]  
Bedford T., 1984, CRINKLY CURVES MARKO
[3]  
Bowen R, 2008, LECT NOTES MATH, V470, P1, DOI 10.1007/978-3-540-77695-6
[4]   MARKOV PARTITIONS ARE NOT SMOOTH [J].
BOWEN, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 71 (01) :130-132
[5]   SMOOTH MARKOV PARTITIONS AND TORAL AUTOMORPHISMS [J].
CAWLEY, E .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1991, 11 :633-651
[6]   RECURRENT SETS [J].
DEKKING, FM .
ADVANCES IN MATHEMATICS, 1982, 44 (01) :78-104
[7]  
Falconer K, 2014, Mathematical foundations and applications, V3rd
[8]  
Gantmacher F.R., 1959, The Theory of Matrices
[9]  
Ito S., 1991, TOKYO J MATH, V14, P277