Boolean Kalman filter and smoother under model uncertainty

被引:38
|
作者
Imani, Mandi [1 ]
Dougherty, Edward R. [2 ,3 ]
Braga-Neto, Ulisses [2 ,3 ]
机构
[1] George Washington Univ, Dept Elect & Comp Engn, Washington, DC 20052 USA
[2] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX USA
[3] TEES, Ctr Bioinformat & Genom Syst Engn, College Stn, TX USA
基金
美国国家科学基金会;
关键词
Partially-observed Boolean dynamical systems; Optimal Bayesian estimation; Minimum mean-square error; Boolean Kalman filter and smoother; Gene regulatory networks; MINIMUM EXPECTED ERROR; CARLO SAMPLING METHODS; PARTICLE FILTERS; PARAMETER-ESTIMATION; OPTIMAL CLASSIFIERS; BAYESIAN FRAMEWORK; DYNAMICAL ANALYSIS; INFERENCE; DISCRETE;
D O I
10.1016/j.automatica.2019.108609
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Partially-observed Boolean dynamical systems (POBDS) are a general class of nonlinear state-space models that provide a rich framework for modeling many complex dynamical systems. The model consists of a hidden Boolean state process, observed through an arbitrary noisy mapping to a measurement space. The optimal minimum mean-square error (MMSE) POBDS state estimators are the Boolean Kalman Filter and Smoother. However, in many practical problems, the system parameters are not fully known and must be estimated. In this paper, for POBDS under model uncertainty, we derive an optimal Bayesian estimator for state and parameter estimation. The exact algorithms are derived for the case of discrete and finite parameter space, and for general parameter spaces, an approximate Markov-Chain Monte-Carlo (MCMC) implementation is introduced. We demonstrate the performance of the proposed methodology by means of numerical experiments with POBDS models of gene regulatory networks observed through noisy measurements. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] On Globalized Robust Kalman Filter Under Model Uncertainty
    Xu, Yang
    Xue, Wenchao
    Shang, Chao
    Fang, Haitao
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2025, 70 (02) : 1147 - 1160
  • [2] A partitioned Kalman filter and smoother
    Fukumori, I
    MONTHLY WEATHER REVIEW, 2002, 130 (05) : 1370 - 1383
  • [3] Synthesis of a Kalman filter under uncertainty
    Polonskii, AD
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOELEKTRONIKA, 2003, 46 (7-8): : 73 - 76
  • [4] Optimal State Estimation for Boolean Dynamical Systems using a Boolean Kalman Smoother
    Imani, Mahdi
    Braga-Neto, Ulisses
    2015 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2015, : 972 - 976
  • [5] Estimating a Dynamic Factor Model in EViews Using the Kalman Filter and Smoother
    Solberger, Martin
    Spanberg, Erik
    COMPUTATIONAL ECONOMICS, 2020, 55 (03) : 875 - 900
  • [6] Estimating a Dynamic Factor Model in EViews Using the Kalman Filter and Smoother
    Martin Solberger
    Erik Spånberg
    Computational Economics, 2020, 55 : 875 - 900
  • [7] Simple Kalman filter and smoother for spacecraft attitude
    Shuster, Malcolm D., 1600, (37):
  • [8] A SIMPLE KALMAN FILTER AND SMOOTHER FOR SPACECRAFT ATTITUDE
    SHUSTER, MD
    JOURNAL OF THE ASTRONAUTICAL SCIENCES, 1989, 37 (01): : 89 - 106
  • [9] New Kalman filter and smoother consistency tests
    Gibbs, Richard G.
    AUTOMATICA, 2013, 49 (10) : 3141 - 3144
  • [10] Application of the Ensemble Kalman Filter and Smoother to a Coupled Atmosphere-ocean Model
    Ueno, Genta
    Higuchi, Tomoyuki
    Kagimoto, Takashi
    Hirose, Naoki
    SOLA, 2007, 3 : 5 - 8