Modulation instability of two-dimensional Bose-Einstein condensates with helicoidal and a mixture of Rashba-Dresselhaus spin-orbit couplings

被引:16
作者
Tabi, Conrad Bertrand [1 ]
Otlaadisa, Phelo [1 ]
Kofane, Timoleon Crepin [1 ,2 ,3 ]
机构
[1] Botswana Int Univ Sci & Technol, Dept Phys & Astron, Private Mail Bag 16, Palapye, Botswana
[2] Univ Yaounde I, Fac Sci, Dept Phys, Lab Mech, POB 812, Yaounde, Cameroon
[3] Univ Yaounde I, Ctr Excellence Africain Technol Informat & Commun, Yaounde, Cameroon
关键词
Vector BECs; Rashba-Dresselhaus spin-orbit coupling; Helicoidal spin-orbit coupling; Modulational instability; Helicoidal gauge potential; DARK SOLITONS; GAS; DYNAMICS; PHASE;
D O I
10.1016/j.physleta.2022.128334
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The modulational instability (MI) process is exclusively studied in a two-component Bose-Einstein condensate (BEC) which includes Rashba-Dresselhaus (RD) spin-orbit (SO) and helicoidal SO couplings. A generalized set of two-dimensional (2D) Gross-Pitaevskii (GP) equations is derived. The tunability of the helicoidal gauge potential is exploited to address BECs dynamics in a square lattice. The MI growth rate is derived, and parametric analyses of MI show the dependence of the instability on interatomic interaction strengths, the RD SO coupling, and helicoidal SO coupling, which combines the gauge amplitude and the helicoidal gauge potential. Direct numerical simulations are carried out to confirm the analytical predictions. Trains of solitons are obtained, and their behaviors are debated when the RD SO parameters are varied under different combinations between the gauge amplitude and the helicoidal gauge potential. The latter gives a potential way to manipulate the trapping capacities of the proposed BEC model. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 102 条
[1]   Dissipative periodic waves, solitons, and breathers of the nonlinear Schrodinger equation with complex potentials [J].
Abdullaev, F. Kh. ;
Konotop, V. V. ;
Salerno, M. ;
Yulin, A. V. .
PHYSICAL REVIEW E, 2010, 82 (05)
[2]   Compactons in Nonlinear Schrodinger Lattices with Strong Nonlinearity Management [J].
Abdullaev, F. Kh. ;
Kevrekidis, P. G. ;
Salerno, M. .
PHYSICAL REVIEW LETTERS, 2010, 105 (11)
[3]   Gap solitons in Bose-Einstein condensates in linear and nonlinear optical lattices [J].
Abdullaev, Fatkhulla ;
Abdumalikov, Abdulaziz ;
Galimzyanov, Ravil .
PHYSICS LETTERS A, 2007, 367 (1-2) :149-155
[4]   Gap-Townes solitons and localized excitations in low-dimensional Bose-Einstein condensates in optical lattices [J].
Abdullaev, FK ;
Salerno, M .
PHYSICAL REVIEW A, 2005, 72 (03)
[5]   Matter-Wave Bright Solitons in Spin-Orbit Coupled Bose-Einstein Condensates [J].
Achilleos, V. ;
Frantzeskakis, D. J. ;
Kevrekidis, P. G. ;
Pelinovsky, D. E. .
PHYSICAL REVIEW LETTERS, 2013, 110 (26)
[6]   OBSERVATION OF BOSE-EINSTEIN CONDENSATION IN A DILUTE ATOMIC VAPOR [J].
ANDERSON, MH ;
ENSHER, JR ;
MATTHEWS, MR ;
WIEMAN, CE ;
CORNELL, EA .
SCIENCE, 1995, 269 (5221) :198-201
[7]   Dynamic control and probing of many-body decoherence in double-well Bose-Einstein condensates [J].
Bar-Gill, Nir ;
Kurizki, Gershon ;
Oberthaler, Markus ;
Davidson, Nir .
PHYSICAL REVIEW A, 2009, 80 (05)
[8]   Dynamics of kink, antikink, bright, generalized Jacobi elliptic function solutions of matter-wave condensates with time-dependent two- and three-body interactions [J].
Belobo, D. Belobo ;
Ben-Bolie, G. H. ;
Kofane, T. C. .
PHYSICAL REVIEW E, 2015, 91 (04)
[9]   Dynamics of matter-wave condensates with time-dependent two-and three-body interactions trapped by a linear potential in the presence of atom gain or loss [J].
Belobo, D. Belobo ;
Ben-Bolie, G. H. ;
Kofane, T. C. .
PHYSICAL REVIEW E, 2014, 89 (04)
[10]   Modulational instability in binary spin-orbit-coupled Bose-Einstein condensates [J].
Bhat, Ishfaq Ahmad ;
Mithun, T. ;
Malomed, B. A. ;
Porsezian, K. .
PHYSICAL REVIEW A, 2015, 92 (06)