Cocycle and orbit equivalence superrigidity for malleable actions of w-rigid groups

被引:104
作者
Popa, Sorin [1 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
D O I
10.1007/s00222-007-0063-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that if a countable discrete group Gamma is w- rigid, i. e. it contains an infinite normal subgroup H with the relative property (T) (e.g. Gamma = SL(2, Z) x Z(2), or Gamma = H x H' with H an infinite Kazhdan group and H' arbitrary), and V is a closed subgroup of the group of unitaries of a finite separable von Neumann algebra (e.g. V countable discrete, or separable compact), then any V- valued measurable cocycle for a measure preserving action Gamma curved right arrow X of Gamma on a probability space ( X, mu) which is weak mixing on H and s-malleable (e.g. the Bernoulli action Gamma curved right arrow [ 0, 1] G) is cohomologous to a group morphism of Gamma into V. We use the case V discrete of this result to prove that if in addition Gamma has no non- trivial finite normal subgroups then any orbit equivalence between Gamma curved right arrow X and a free ergodicmeasure preserving action of a countable group Lambda is implemented by a conjugacy of the actions, with respect to some group isomorphism Gamma similar or equal to Lambda.
引用
收藏
页码:243 / 295
页数:53
相关论文
共 57 条
[1]   INDECOMPOSABILITY OF EQUIVALENCE-RELATIONS GENERATED BY WORD HYPERBOLIC GROUPS [J].
ADAMS, S .
TOPOLOGY, 1994, 33 (04) :785-798
[2]   INDECOMPOSABILITY OF TREED EQUIVALENCE-RELATIONS [J].
ADAMS, S .
ISRAEL JOURNAL OF MATHEMATICS, 1988, 64 (03) :362-380
[3]  
BURGER M, 1991, J REINE ANGEW MATH, V413, P36
[4]  
CHERIX PA, 2000, GROUPS HAAGERUP PROP
[5]   CLASSIFICATION OF INJECTIVE FACTORS - CASES II1, II INFINITY, III LAMBDA, LAMBDA NOT-EQUAL-TO 1 [J].
CONNES, A .
ANNALS OF MATHEMATICS, 1976, 104 (01) :73-115
[6]  
CONNES A, 1982, B AM MATH SOC, V6, P211, DOI 10.1090/S0273-0979-1982-14981-3
[7]  
Connes A., 1982, ERGOD THEOR DYN SYST, V1, P431
[8]  
Connes A., 1973, Ann. Sci. Ec. Norm. Super., V6, P133, DOI DOI 10.24033/ASENS.1247
[9]  
Connes A., 1980, J OPERAT THEOR, V4, P151
[10]   Relative Kazhdan property [J].
De Cornulier, Yves .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2006, 39 (02) :301-333