A SYMMETRY RESULT FOR DEGENERATE ELLIPTIC EQUATIONS ON THE WIENER SPACE WITH NONLINEAR BOUNDARY CONDITIONS AND APPLICATIONS

被引:3
作者
Novaga, Matteo [1 ]
Pallara, Diego [2 ,3 ]
Sire, Yannick [4 ]
机构
[1] Univ Pisa, Dipartimento Matemat, Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy
[2] Univ Salento, Dipartimento Matemat & Fis Ennio De Giorgi, POB 193, I-73100 Lecce, Italy
[3] Univ Salento, Ist Nazl Fis Nucl, POB 193, I-73100 Lecce, Italy
[4] Univ Aix Marseille, I2M, CNRS, UMR 7353, Marseille, France
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2016年 / 9卷 / 03期
关键词
Fractional Ornstein-Uhlenbeck operator; Wiener spaces; EXTENSION PROBLEM; CONJECTURE; GIORGI; INEQUALITY; REGULARITY;
D O I
10.3934/dcdss.2016030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to study a boundary reaction problem on the space X x R, where X is an abstract Wiener space. We prove that smooth bounded solutions enjoy a symmetry property, i.e., are one-dimensional in a suitable sense. As a corollary of our result, we obtain a symmetry property for some solutions of the following equation (-Delta(gamma))(s)u = f(u), with s is an element of (0, 1), where (-Delta(gamma))(s) denotes a fractional power of the Ornstein-Uhlenbeck operator, and we prove that for any s is an element of (0, 1) monotone solutions are one-dimensional.
引用
收藏
页码:815 / 831
页数:17
相关论文
共 23 条
[1]   On a long-standing conjecture of E.!De Giorgi:: Symmetry in 3D for general nonlinearities and a local minimality property [J].
Alberti, G ;
Ambrosio, L ;
Cabré, X .
ACTA APPLICANDAE MATHEMATICAE, 2001, 65 (1-3) :9-33
[2]   Entire solutions of semilinear elliptic equations in R3 and a conjecture of De Giorgi [J].
Ambrosio, L ;
Cabré, X .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 13 (04) :725-739
[3]  
Bogachev Vladimir I., 1998, Mathematical Surveys and Monographs, V62, DOI 10.1090/surv/062
[4]   Sharp energy estimates for nonlinear fractional diffusion equations [J].
Cabre, Xavier ;
Cinti, Eleonora .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2014, 49 (1-2) :233-269
[5]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[6]   A SYMMETRY RESULT FOR THE ORNSTEIN-UHLENBECK OPERATOR [J].
Cesaroni, Annalisa ;
Novaga, Matteo ;
Valdinoci, Enrico .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (06) :2451-2467
[7]   ONE-DIMENSIONAL SYMMETRY FOR SEMILINEAR EQUATIONS WITH UNBOUNDED DRIFT [J].
Cesaroni, Annalisa ;
Novaga, Matteo ;
Pinamonti, Andrea .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (05) :2203-2211
[8]  
De Giorgi E., 1978, P INT M REC METH NON, P131
[9]  
De Giorgi Ennio, 2006, SELECTED PAPERS, P487
[10]  
del Pino M, 2010, CONTEMP MATH, V528, P115