Local shape control of a weighted interpolation surface

被引:0
作者
Pan, Jianxun [1 ]
Bao, Fangxun [2 ]
机构
[1] Womans Acad Shandong, Jinan, Peoples R China
[2] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
关键词
rational spline; bivariate blending interpolation; weighted interpolation; shape control; computer-aided geometric design; BIVARIATE RATIONAL INTERPOLATION; HERMITE INTERPOLATION; SPLINES;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper proposes a new weighted bivariate blending rational interpolator" only based on function values. The interpolation function with some free parameters has simple and explicit mathematical representation, and it is C-1-continuous for any positive parameters and weighted coefficient. More important, the shape of the interpolating surfaces can be modified by selecting suitable parameters and weighted coefficient. In order to meet the needs of practical design, a local shape control method is employed to control the shape of interpolating surfaces. In the special case, the method of "Central Point Value Control" is discussed.
引用
收藏
页码:68 / 79
页数:12
相关论文
共 19 条
[1]   A blending interpolator with value control and minimal strain energy [J].
Bao, Fangxun ;
Sun, Qinghua ;
Pan, Jianxun ;
Duan, Qi .
COMPUTERS & GRAPHICS-UK, 2010, 34 (02) :119-124
[2]  
Bezier P., 1986, The mathematical basis of the UNISURF CAD system
[3]  
Chui C. K., 1988, MULTIVARIATE SPLINE
[4]  
Dierckx P., 1989, Computer-Aided Geometric Design, V6, P279, DOI 10.1016/0167-8396(89)90029-0
[5]   Hermite interpolation by piecewise rational surface [J].
Duan, Qi ;
Li, Shilong ;
Bao, Fangxun ;
Twizell, E. H. .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 198 (01) :59-72
[6]   A bivariate rational interpolation with a bi-quadratic denominator [J].
Duan, Qi ;
Zhang, Huanling ;
Liu, Aikui ;
Li, Huaigu .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 195 (1-2) :24-33
[7]   A bivariate rational interpolation and the properties [J].
Duan, Qi ;
Zhang, Yunfeng ;
Twizell, E. H. .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 179 (01) :190-199
[8]   Local control of interpolating rational cubic spline curves [J].
Duan, Qi ;
Bao, Fangxun ;
Du, Shitian ;
Twizell, E. H. .
COMPUTER-AIDED DESIGN, 2009, 41 (11) :825-829
[9]  
Farin G., 2014, Curves and Surfaces for Computer-Aided Geometric Design: A Practical Guide
[10]   INTERACTIVE CURVE DESIGN USING C2 RATIONAL SPLINES [J].
GREGORY, JA ;
SARFRAZ, M .
COMPUTERS & GRAPHICS, 1994, 18 (02) :153-159