Improved performance using a plasticized polymer electrolyte for quasi-solid state dye-sensitized solar cells

被引:31
作者
Cui, Yanzheng [1 ]
Zhang, Jing [1 ]
Wang, Peiqing [1 ]
Zhang, Xueni [1 ]
Zheng, Jun [1 ]
Sun, Qiang [1 ]
Feng, Jiangwei [1 ]
Zhu, Yuejin [1 ]
机构
[1] Ningbo Univ, Fac Sci, Ningbo 315211, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Dye-sensitized solar cell; Polymer electrolytes; Ionic conductivity; Electrochemical impedance measurement; LiN(SO2CF3)(2); POLY(ETHYLENE OXIDE); LIQUID ELECTROLYTES; TIO2; FILMS; EFFICIENCY; LITHIUM; CONDUCTIVITY; CONFORMATION; ION; PEO; NANOCOMPOSITES;
D O I
10.1016/j.electacta.2012.04.061
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A PEO/P(VDF-HFP) polymer-blend electrolyte is modified by different amounts of LiN(SO2CF3)(2) (lithium bis(trifluoromethanesulfone)imide, LiTFSI). Fourier transform infrared (FT-IR) and differential scanning calorimetry (DSC) are carried out to examine the configuration changes of the polymer electrolyte. LiTFSI acts as a plasticizer influencing the ionic conductivity of the LiTFSI-modified polymer electrolyte, and improves the short-circuit photocurrent effectively. The electrochemical impedance spectroscopy (EIS) indicates that the intercalation or adsorption of overdose Li+ to the TiO2 photoanode surface positively changes the Fermi energy level and the conduction band. This improves the interface recombination in the DSSC and reduces the open-circuit voltage. With moderate LiTFSI content (0.05 g, nKI/nI(2) = 7:1) modification, the DSSC exhibits a 1.6 mA cm(-2) improvement of current density and an improved performance of 5.03% compared with 4.51% of the original DSSC. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:194 / 200
页数:7
相关论文
共 46 条
[1]   Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy [J].
Adachi, Motonari ;
Sakamoto, Masaru ;
Jiu, Jinting ;
Ogata, Yukio ;
Isoda, Seiji .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (28) :13872-13880
[2]   Ionic conductivity and interfacial properties of nanochitin-incorporated polyethylene oxide-LiN(C2F5SO2)2 polymer electrolytes [J].
Angulakshmi, N. ;
Kumar, T. Prem ;
Thomas, Sabu ;
Stephan, A. Manuel .
ELECTROCHIMICA ACTA, 2010, 55 (04) :1401-1406
[3]  
ARMAND MB, 1987, POLYM ELECTROLYTE RE, pCH1
[4]   COORDINATION AND CONFORMATION IN PEO, PEGM AND PEG SYSTEMS CONTAINING LITHIUM OR LANTHANUM TRIFLATE [J].
BERNSON, A ;
LINDGREN, J ;
HUANG, WW ;
FRECH, R .
POLYMER, 1995, 36 (23) :4471-4478
[5]   Hydrogen bonding effect on the poly(ethylene oxide), phenolic resin, and lithium perchlorate-based solid-state electrolyte [J].
Chen, HW ;
Jiang, CH ;
Wu, HD ;
Chang, FC .
JOURNAL OF APPLIED POLYMER SCIENCE, 2004, 91 (02) :1207-1216
[6]   MOLECULAR TRANSPORT IN LIQUIDS AND GLASSES [J].
COHEN, MH ;
TURNBULL, D .
JOURNAL OF CHEMICAL PHYSICS, 1959, 31 (05) :1164-1169
[7]   Connectivity, ionic interactions, and migration in a fast-ion-conducting polymer-in-salt electrolyte based on poly(acrylonitrile) and LiCF3SO3 [J].
Ferry, A ;
Edman, L ;
Forsyth, M ;
MacFarlane, DR ;
Sun, JZ .
JOURNAL OF APPLIED PHYSICS, 1999, 86 (04) :2346-2348
[8]   SYNTHESIS, PROPERTIES, AND REACTIONS OF BIS((TRIFLUOROMETHYL)SULFONYL) IMIDE, (CF3SO2)2NH [J].
FOROPOULOS, J ;
DESMARTEAU, DD .
INORGANIC CHEMISTRY, 1984, 23 (23) :3720-3723
[9]   PHYSICAL-PROPERTIES OF SOLID POLYMER ELECTROLYTE PEO(LITFSI) COMPLEXES [J].
GORECKI, W ;
JEANNIN, M ;
BELORIZKY, E ;
ROUX, C ;
ARMAND, M .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1995, 7 (34) :6823-6832
[10]  
GRAY FM, 1987, POLYM ELECTROLYTE RE, pCH6