Spacelike Willmore surfaces in 4-dimensional Lorentzian space forms

被引:10
|
作者
Ma Xiang [1 ]
Wang Peng [1 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS | 2008年 / 51卷 / 09期
基金
中国国家自然科学基金;
关键词
spacelike Willmore surfaces; polar surfaces; adjoint transforms; duality theorem; Willmore; 2-spheres;
D O I
10.1007/s11425-008-0052-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Spacelike Willmore surfaces in 4-dimensional Lorentzian space forms, a topic in Lorentzian conformal geometry which parallels the theory of Willmore surfaces in S(4), are studied in this paper. We define two kinds of transforms for such a surface, which produce the so-called left/right polar surfaces and the adjoint surfaces. These new surfaces are again conformal Willmore surfaces. For them the interesting duality theorem holds. As an application spacelike Willmore 2-spheres are classified. Finally we construct a family of homogeneous spacelike Willmore tori.
引用
收藏
页码:1561 / 1576
页数:16
相关论文
共 50 条