A note on domination and independence-domination numbers of graphs

被引:0
作者
Milanic, Martin [1 ,2 ]
机构
[1] Univ Primorska, UP IAM, SI-6000 Koper, Slovenia
[2] Univ Primorska, UP FAMNIT, SI-6000 Koper, Slovenia
关键词
Vizing's conjecture; domination number; independence-domination number; weakly chordal graph; NP-completeness; hereditary graph class; IDD-perfect graph; SUBGRAPHS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Vizing's conjecture is true for graphs G satisfying gamma(i)(G) = gamma(G), where gamma(G) is the domination number of a graph G and gamma(i)(G) is the independence-domination number of G, that is, the maximum, over all independent sets I in G, of the minimum number of vertices needed to dominate I. The equality gamma(i)(G) = gamma(G) is known to hold for all chordal graphs and for chordless cycles of length 0 (mod 3). We prove some results related to graphs for which the above equality holds. More specifically, we show that the problems of determining whether gamma(i)(G) = gamma(G) = 2 and of verifying whether gamma(i)(G) >= 2 are NP-complete, even if G is weakly chordal. We also initiate the study of the equality gamma(i) = gamma in the context of hereditary graph classes and exhibit two infinite families of graphs for which gamma(i) < gamma.
引用
收藏
页码:89 / 97
页数:9
相关论文
共 23 条
[1]  
Aharoni R, 2000, J GRAPH THEOR, V35, P83, DOI 10.1002/1097-0118(200010)35:2<83::AID-JGT2>3.0.CO
[2]  
2-V
[3]   A tree version of Konig's theorem [J].
Aharoni, R ;
Berger, E ;
Ziv, R .
COMBINATORICA, 2002, 22 (03) :335-343
[4]   Vizing's conjecture for chordal graphs [J].
Aharoni, Ron ;
Szabo, Tibor .
DISCRETE MATHEMATICS, 2009, 309 (06) :1766-1768
[5]  
[Anonymous], 1979, Computers and Intractablity: A Guide to the Theory of NP-Completeness
[6]  
[Anonymous], 1961, Wissenschaftliche Zeitschrift
[7]   Complete description of forbidden subgraphs in the structural domination problem [J].
Bacso, Gabor .
DISCRETE MATHEMATICS, 2009, 309 (08) :2466-2472
[8]   ON DOMINATION PROBLEMS FOR PERMUTATION AND OTHER GRAPHS [J].
BRANDSTADT, A ;
KRATSCH, D .
THEORETICAL COMPUTER SCIENCE, 1987, 54 (2-3) :181-198
[9]  
Brandstadt A., 1999, SIAM MONOG DISCR MAT
[10]   Vizing's conjecture: a survey and recent results [J].
Bresar, Bostjan ;
Dorbec, Paul ;
Goddard, Wayne ;
Hartnell, Bert L. ;
Henning, Michael A. ;
Klavzar, Sandi ;
Rall, Douglas F. .
JOURNAL OF GRAPH THEORY, 2012, 69 (01) :46-76