A note on domination and independence-domination numbers of graphs

被引:0
|
作者
Milanic, Martin [1 ,2 ]
机构
[1] Univ Primorska, UP IAM, SI-6000 Koper, Slovenia
[2] Univ Primorska, UP FAMNIT, SI-6000 Koper, Slovenia
关键词
Vizing's conjecture; domination number; independence-domination number; weakly chordal graph; NP-completeness; hereditary graph class; IDD-perfect graph; SUBGRAPHS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Vizing's conjecture is true for graphs G satisfying gamma(i)(G) = gamma(G), where gamma(G) is the domination number of a graph G and gamma(i)(G) is the independence-domination number of G, that is, the maximum, over all independent sets I in G, of the minimum number of vertices needed to dominate I. The equality gamma(i)(G) = gamma(G) is known to hold for all chordal graphs and for chordless cycles of length 0 (mod 3). We prove some results related to graphs for which the above equality holds. More specifically, we show that the problems of determining whether gamma(i)(G) = gamma(G) = 2 and of verifying whether gamma(i)(G) >= 2 are NP-complete, even if G is weakly chordal. We also initiate the study of the equality gamma(i) = gamma in the context of hereditary graph classes and exhibit two infinite families of graphs for which gamma(i) < gamma.
引用
收藏
页码:89 / 97
页数:9
相关论文
共 50 条
  • [1] Note on domination and minus domination numbers in cubic graphs
    Chen, YJ
    Cheng, TCE
    Ng, CT
    Shan, EF
    APPLIED MATHEMATICS LETTERS, 2005, 18 (09) : 1062 - 1067
  • [2] CHARACTERIZATION OF GRAPHS WITH EQUAL DOMINATION NUMBERS AND INDEPENDENCE NUMBERS
    Jou, Min-Jen
    TAIWANESE JOURNAL OF MATHEMATICS, 2010, 14 (04): : 1537 - 1542
  • [3] Graphs with equal domination and independent domination numbers
    Gupta, Purnima
    Singh, Rajesh
    Arumugam, S.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (02) : 691 - 696
  • [4] Characterization of graphs with equal domination and connected domination numbers
    Chen, XG
    Sun, L
    Xing, HM
    DISCRETE MATHEMATICS, 2004, 289 (1-3) : 129 - 135
  • [5] Inequalities involving independence domination, f-domination, connected and total f-domination numbers
    Sanming Zhou
    Czechoslovak Mathematical Journal, 2000, 50 : 321 - 330
  • [6] Inequalities involving independence domination, f-domination, connected and total f-domination numbers
    Zhou, SM
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2000, 50 (02) : 321 - 330
  • [7] On rainbow domination numbers of graphs
    Shao, Zehui
    Liang, Meilian
    Yin, Chuang
    Xu, Xiaodong
    Pavlic, Polona
    Zerovnik, Janez
    INFORMATION SCIENCES, 2014, 254 : 225 - 234
  • [8] Domination subdivision numbers in graphs
    Favaron, O
    Haynes, TW
    Hedetniemi, ST
    UTILITAS MATHEMATICA, 2004, 66 : 195 - 209
  • [9] Domination and independence numbers of large 2-crossing-critical graphs
    Irsic, Vesna
    Lekse, Marusa
    Paenik, Mihael
    Podlogar, Petra
    Praeek, Martin
    ARS MATHEMATICA CONTEMPORANEA, 2023, 23 (04)
  • [10] On graphs with equal chromatic transversal domination and connected domination numbers
    Ayyaswamy, Singaraj Kulandaiswamy
    Natarajan, Chidambaram
    Venkatakrishnan, Yanamandram Balasubramanian
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 27 (04): : 843 - 849