Joint Inversion Algorithm of Sea Surface Temperature From Microwave and Infrared Brightness Temperature

被引:1
作者
Chen, Zhiwei [1 ]
Jin, Rong [1 ]
Li, Qingxia [1 ]
Zhao, Guanghui [1 ]
Xiao, Chengwang [1 ]
Lei, Zhenyu [1 ]
Huang, Yuhang [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Elect Informat & Commun, Sci & Technol Multispectral Informat Proc Lab, Wuhan 430074, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2022年 / 60卷
关键词
Microwave radiometry; Ocean temperature; Electromagnetic heating; MODIS; Temperature measurement; Remote sensing; Microwave measurement; Infrared remote sensing; joint inversion algorithm; microwave remote sensing; sea surface temperature (SST); BULK PARAMETERIZATION; OCEAN SURFACE; AMSR-E; VALIDATION; WATER; AIR; FLUXES; SKIN;
D O I
10.1109/TGRS.2022.3168984
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The demand for high-precision sea surface temperature (SST) has been growing rapidly in recent years because SST is one of the key parameters to describe the thermal state of the sea surface. This article analyzes the differences between microwave remote sensing and infrared remote sensing for SST, including the spatial resolution difference and the penetration depth difference. In order to improve the accuracy of retrieved SST, this article proposes a joint inversion algorithm for SST from combining microwave brightness temperature (BT) and infrared BT, which has also taken the influence of wind speed and atmosphere into consideration. Experiments confirm that SST data obtained from the joint inversion algorithm are more accurate than those obtained from the existing inversion algorithms.
引用
收藏
页数:13
相关论文
共 49 条
[1]   Construction of a climate data record of sea surface temperature from passive microwave measurements [J].
Alerskans, Emy ;
Hoyer, Jacob L. ;
Gentemann, Chelle L. ;
Pedersen, Leif Toudal ;
Nielsen-Englyst, Pia ;
Donlon, Craig .
REMOTE SENSING OF ENVIRONMENT, 2020, 236
[2]  
Ashcroft Peter, 2019, NSIDC, DOI 10.5067/YL62FUZLAJUT
[3]  
Brisson A, 2002, J ATMOS OCEAN TECH, V19, P1638, DOI 10.1175/1520-0426(2002)019<1638:ROOYOP>2.0.CO
[4]  
2
[5]   MEASUREMENT OF THE ROUGHNESS OF THE SEA SURFACE FROM PHOTOGRAPHS OF THE SUNS GLITTER [J].
COX, C ;
MUNK, W .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1954, 44 (11) :838-850
[6]   The global ocean data assimilation experiment high-resolution sea surface temperature pilot project [J].
Donlon, C. ;
Robinson, I. ;
Casey, K. S. ;
Vazquez-Cuervo, J. ;
Armstrong, E. ;
Arino, O. ;
Gentemann, C. ;
May, D. ;
LeBorgne, P. ;
Piolle, J. ;
Barton, I. ;
Beggs, H. ;
Poulter, D. J. S. ;
Merchant, C. J. ;
Bingham, A. ;
Heinz, S. ;
Harris, A. ;
Wick, G. ;
Emery, B. ;
Minnett, P. ;
Evans, R. ;
Llewellyn-Jones, D. ;
Mutlow, C. ;
Reynolds, R. W. ;
Kawamura, H. ;
Rayner, N. .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2007, 88 (08) :1197-1213
[7]  
Donlon CJ, 2002, J CLIMATE, V15, P353, DOI 10.1175/1520-0442(2002)015<0353:TIVOSS>2.0.CO
[8]  
2
[9]   An overview of MODIS capabilities for ocean science observations [J].
Esaias, WE ;
Abbott, MR ;
Barton, I ;
Brown, OB ;
Campbell, JW ;
Carder, KL ;
Clark, DK ;
Evans, RH ;
Hoge, FE ;
Gordon, HR ;
Balch, WM ;
Letelier, R ;
Minnett, PJ .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1998, 36 (04) :1250-1265
[10]   Cool-skin and warm-layer effects on sea surface temperature [J].
Fairall, CW ;
Bradley, EF ;
Godfrey, JS ;
Wick, GA ;
Edson, JB ;
Young, GS .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1996, 101 (C1) :1295-1308