Network Diffusion Promotes the Integrative Analysis of Multiple Omics

被引:21
作者
Di Nanni, Noemi [1 ,2 ]
Bersanelli, Matteo [3 ,4 ]
Milanesi, Luciano [1 ]
Mosca, Ettore [1 ]
机构
[1] CNR, Inst Biomed Technol, Milan, Italy
[2] Univ Pavia, Dept Ind & Informat Engn, Pavia, Italy
[3] Univ Bologna, Dept Phys & Astron, Bologna, Italy
[4] Natl Inst Nucl Phys INFN, Bologna, Italy
关键词
integrative analysis; omics data; biological networks; precision medicine; network-diffusion; GENE-EXPRESSION; CANCER; PATHWAYS; REVEALS; STRATIFICATION; PROPAGATION; MUTATIONS; LANDSCAPE; DYNAMICS; MODULES;
D O I
10.3389/fgene.2020.00106
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The development of integrative methods is one of the main challenges in bioinformatics. Network-based methods for the analysis of multiple gene-centered datasets take into account known and/or inferred relations between genes. In the last decades, the mathematical machinery of network diffusion-also referred to as network propagation-has been exploited in several network-based pipelines, thanks to its ability of amplifying association between genes that lie in network proximity. Indeed, network diffusion provides a quantitative estimation of network proximity between genes associated with one or more different data types, from simple binary vectors to real vectors. Therefore, this powerful data transformation method has also been increasingly used in integrative analyses of multiple collections of biological scores and/or one or more interaction networks. We present an overview of the state of the art of bioinformatics pipelines that use network diffusion processes for the integrative analysis of omics data. We discuss the fundamental ways in which network diffusion is exploited, open issues and potential developments in the field. Current trends suggest that network diffusion is a tool of broad utility in omics data analysis. It is reasonable to think that it will continue to be used and further refined as new data types arise (e.g. single cell datasets) and the identification of system-level patterns will be considered more and more important in omics data analysis.
引用
收藏
页数:12
相关论文
共 82 条
[1]   Integrated Genomic Characterization of Papillary Thyroid Carcinoma [J].
Agrawal, Nishant ;
Akbani, Rehan ;
Aksoy, B. Arman ;
Ally, Adrian ;
Arachchi, Harindra ;
Asa, Sylvia L. ;
Auman, J. Todd ;
Balasundaram, Miruna ;
Balu, Saianand ;
Baylin, Stephen B. ;
Behera, Madhusmita ;
Bernard, Brady ;
Beroukhim, Rameen ;
Bishop, Justin A. ;
Black, Aaron D. ;
Bodenheimer, Tom ;
Boice, Lori ;
Bootwalla, Moiz S. ;
Bowen, Jay ;
Bowlby, Reanne ;
Bristow, Christopher A. ;
Brookens, Robin ;
Brooks, Denise ;
Bryant, Robert ;
Buda, Elizabeth ;
Butterfield, Yaron S. N. ;
Carling, Tobias ;
Carlsen, Rebecca ;
Carter, Scott L. ;
Carty, Sally E. ;
Chan, Timothy A. ;
Chen, Amy Y. ;
Cherniack, Andrew D. ;
Cheung, Dorothy ;
Chin, Lynda ;
Cho, Juok ;
Chu, Andy ;
Chuah, Eric ;
Cibulskis, Kristian ;
Ciriello, Giovanni ;
Clarke, Amanda ;
Clayman, Gary L. ;
Cope, Leslie ;
Copland, John A. ;
Covington, Kyle ;
Danilova, Ludmila ;
Davidsen, Tanja ;
Demchok, John A. ;
DiCara, Daniel ;
Dhalla, Noreen .
CELL, 2014, 159 (03) :676-690
[2]  
Ahmad A, 2016, Genom Comput Biol, V2, P32
[3]   Multilayer Networks in a Nutshell [J].
Aleta, Alberto ;
Moreno, Yamir .
ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 10, 2019, 10 (01) :45-62
[4]  
[Anonymous], IEEE T KNOWLEDGE DAT
[5]   The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans [J].
Ardlie, Kristin G. ;
DeLuca, David S. ;
Segre, Ayellet V. ;
Sullivan, Timothy J. ;
Young, Taylor R. ;
Gelfand, Ellen T. ;
Trowbridge, Casandra A. ;
Maller, Julian B. ;
Tukiainen, Taru ;
Lek, Monkol ;
Ward, Lucas D. ;
Kheradpour, Pouya ;
Iriarte, Benjamin ;
Meng, Yan ;
Palmer, Cameron D. ;
Esko, Tonu ;
Winckler, Wendy ;
Hirschhorn, Joel N. ;
Kellis, Manolis ;
MacArthur, Daniel G. ;
Getz, Gad ;
Shabalin, Andrey A. ;
Li, Gen ;
Zhou, Yi-Hui ;
Nobel, Andrew B. ;
Rusyn, Ivan ;
Wright, Fred A. ;
Lappalainen, Tuuli ;
Ferreira, Pedro G. ;
Ongen, Halit ;
Rivas, Manuel A. ;
Battle, Alexis ;
Mostafavi, Sara ;
Monlong, Jean ;
Sammeth, Michael ;
Mele, Marta ;
Reverter, Ferran ;
Goldmann, Jakob M. ;
Koller, Daphne ;
Guigo, Roderic ;
McCarthy, Mark I. ;
Dermitzakis, Emmanouil T. ;
Gamazon, Eric R. ;
Im, Hae Kyung ;
Konkashbaev, Anuar ;
Nicolae, Dan L. ;
Cox, Nancy J. ;
Flutre, Timothee ;
Wen, Xiaoquan ;
Stephens, Matthew .
SCIENCE, 2015, 348 (6235) :648-660
[6]   Multiplex social ecological network analysis reveals how social changes affect community robustness more than resource depletion [J].
Baggio, Jacopo A. ;
BurnSilver, Shauna B. ;
Arenas, Alex ;
Magdanz, James S. ;
Kofinas, Gary P. ;
De Domenico, Manlio .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (48) :13708-13713
[7]   Network medicine: a network-based approach to human disease [J].
Barabasi, Albert-Laszlo ;
Gulbahce, Natali ;
Loscalzo, Joseph .
NATURE REVIEWS GENETICS, 2011, 12 (01) :56-68
[8]   Network diffusion-based analysis of high-throughput data for the detection of differentially enriched modules [J].
Bersanelli, Matteo ;
Mosca, Ettore ;
Remondini, Daniel ;
Castellani, Gastone ;
Milanesi, Luciano .
SCIENTIFIC REPORTS, 2016, 6
[9]   Methods for the integration of multi-omics data: mathematical aspects [J].
Bersanelli, Matteo ;
Mosca, Ettore ;
Remondini, Daniel ;
Giampieri, Enrico ;
Sala, Claudia ;
Castellani, Gastone ;
Milanesi, Luciano .
BMC BIOINFORMATICS, 2016, 17
[10]   Comparative Analysis of Normalization Methods for Network Propagation [J].
Biran, Hadas ;
Kupiec, Martin ;
Sharan, Roded .
FRONTIERS IN GENETICS, 2019, 10