Ornstein-Uhlenbeck Processes Driven by Cylindrical Levy Processes

被引:23
作者
Riedle, Markus [1 ]
机构
[1] Kings Coll London, Dept Math, London WC2R 2LS, England
基金
英国工程与自然科学研究理事会;
关键词
Cylindrical Levy process; Stochastic integral; Stochastic integration; Stochastic evolution equation; Ornstein-Uhlenbeck process; TIME REGULARITY;
D O I
10.1007/s11118-014-9458-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we introduce a theory of integration for deterministic, operator-valued integrands with respect to cylindrical L,vy processes in separable Banach spaces. Here, a cylindrical L,vy process is understood in the classical framework of cylindrical random variables and cylindrical measures, and thus, it can be considered as a natural generalisation of cylindrical Wiener processes or white noises. Depending on the underlying Banach space, we provide necessary and/or sufficient conditions for a function to be integrable. In the last part, the developed theory is applied to define Ornstein-Uhlenbeck processes driven by cylindrical L,vy processes and several examples are considered.
引用
收藏
页码:809 / 838
页数:30
相关论文
共 38 条
[11]   Stochastic convolution in separable Banach spaces and the stochastic linear Cauchy problem [J].
Brzezniak, Z ;
van Neerven, J .
STUDIA MATHEMATICA, 2000, 143 (01) :43-74
[12]   Regularity of Ornstein-Uhlenbeck Processes Driven by a L,vy White Noise [J].
Brzezniak, Zdzisaw ;
Zabczyk, Jerzy .
POTENTIAL ANALYSIS, 2010, 32 (02) :153-188
[13]   Time irregularity of generalized Ornstein-Uhlenbeck processes [J].
Brzezniak, Zdzislaw ;
Goldys, Ben ;
Imkeller, Peter ;
Peszat, Szymon ;
Priola, Enrico ;
Zabczyk, Jerzy .
COMPTES RENDUS MATHEMATIQUE, 2010, 348 (5-6) :273-276
[14]  
Chojnowska-Michalik A., 1987, STOCHASTICS, V21, P251
[15]  
Dieudonne J., 1969, Foundations of Modern Analysis
[16]  
Dunford N., 1988, Linear Operators General Theory
[17]  
Fremlin D. H., 2006, MEASURE THEORY, V4
[18]  
FREMLIN DH, 1972, P LOND MATH SOC, V25, P115
[19]  
Linde W., 1983, INFINITELY DIVISIBLE
[20]   A Note on time regularity of generalized Ornstein-Uhlenbeck processes with cylindrical stable noise [J].
Liu, Yong ;
Zhai, Jianliang .
COMPTES RENDUS MATHEMATIQUE, 2012, 350 (1-2) :97-100