Ornstein-Uhlenbeck Processes Driven by Cylindrical Levy Processes

被引:23
作者
Riedle, Markus [1 ]
机构
[1] Kings Coll London, Dept Math, London WC2R 2LS, England
基金
英国工程与自然科学研究理事会;
关键词
Cylindrical Levy process; Stochastic integral; Stochastic integration; Stochastic evolution equation; Ornstein-Uhlenbeck process; TIME REGULARITY;
D O I
10.1007/s11118-014-9458-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we introduce a theory of integration for deterministic, operator-valued integrands with respect to cylindrical L,vy processes in separable Banach spaces. Here, a cylindrical L,vy process is understood in the classical framework of cylindrical random variables and cylindrical measures, and thus, it can be considered as a natural generalisation of cylindrical Wiener processes or white noises. Depending on the underlying Banach space, we provide necessary and/or sufficient conditions for a function to be integrable. In the last part, the developed theory is applied to define Ornstein-Uhlenbeck processes driven by cylindrical L,vy processes and several examples are considered.
引用
收藏
页码:809 / 838
页数:30
相关论文
共 38 条
[1]  
[Anonymous], 2013, Limit Theorems for Stochastic Processes
[2]  
[Anonymous], 1987, Probability Distributions on Banach Spaces
[3]  
[Anonymous], 1980, Functional Analysis
[4]   Cylindrical Levy processes in Banach spaces [J].
Applebaum, David ;
Riedle, Markus .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2010, 101 :697-726
[5]   TYPE, COTYPE AND LEVY MEASURES IN BANACH-SPACES [J].
ARAUJO, A ;
GINE, E .
ANNALS OF PROBABILITY, 1978, 6 (04) :637-643
[6]  
Badrikian A., 1970, SEMINAIRE FONCTIONS, V139
[7]  
Bogachev V. I., 2007, Measure Theory, V1, DOI DOI 10.1007/978-3-540-34514-5
[8]  
Bogachev V. I., 1998, Gaussian Measures
[9]  
Bogachev V I., 2007, Measure Theory, Vvol I, II, DOI DOI 10.1371/journal.pgen.1000083
[10]  
Bourbaki N., 2004, ELEMENTS MATH FUNCTI