Perturbative and nonperturbative studies with the delta function potential

被引:8
作者
Bera, Nabakumar [1 ]
Bhattacharyya, Kamal [2 ]
Bhattacharjee, Jayanta K. [1 ]
机构
[1] Indian Assoc Cultivat Sci, Dept Theoret Phys, Kolkata 700032, India
[2] Univ Calcutta, Dept Chem, Kolkata 700009, W Bengal, India
关键词
D O I
10.1119/1.2830531
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
We show that the delta-function potential can be exploited along with perturbation theory to yield the result of certain infinite series. The idea is that any exactly soluble potential, if coupled with a delta function potential, remains exactly soluble. We use the strength of the delta function as an expansion parameter and express the second-order energy shift as an infinite sum in perturbation theory. The analytical solution is used to determine the second-order energy shift and hence the sum of an infinite series. By an appropriate choice of the unperturbed system, we can show the importance of the continuum in the energy shift of bound states. (c) 2008 American Association of Physics Teachers.
引用
收藏
页码:250 / 257
页数:8
相关论文
共 23 条
[1]  
[Anonymous], 1966, PERTURBATION THEORY
[2]   A new efficient method for calculating perturbative energies using functions which are not square integrable: Regularization and justification - Comment [J].
Au, CK ;
Chow, CK ;
Chu, CS .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (11) :4133-4136
[3]  
Cooper F., 2001, Supersymmetry In Quantum Mechanics
[4]   EFFECT OF THE CONTINUUM STATES IN SECOND-ORDER PERTURBATION-THEORY - AN EXAMPLE [J].
CORONADO, M ;
DOMINGUEZ, N ;
FLORES, J ;
DELAPORTILLA, C .
AMERICAN JOURNAL OF PHYSICS, 1982, 50 (01) :27-29
[5]  
DEALCANTARABONF.OF, 2005, AM J PHYS, V74, P43
[6]  
Griffiths DJ, 2006, INTRO QUANTUM MECH
[7]   Numerical instability in Rayleigh-Schrodinger quantum mechanics [J].
Hai, WH ;
Zhu, XW ;
Feng, M ;
Shi, L ;
Gao, KL ;
Fang, XM ;
Chong, GS .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (10) :L79-L87
[8]  
Hirschfelder J. O., 1964, Advances in Quantum Chemistry, V1, P255
[9]   CONTRIBUTION OF CONTINUUM IN PERTURBATION-THEORY [J].
KIANG, D .
AMERICAN JOURNAL OF PHYSICS, 1977, 45 (03) :308-309
[10]   The Bloch wave operator: generalizations and applications: Part I. The time-independent case [J].
Killingbeck, JP ;
Jolicard, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (20) :R105-R180