Object localization using texture Motifs and Markov random fields

被引:0
作者
Newsam, S [1 ]
Bhagavathy, S [1 ]
Manjunath, BS [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
来源
2003 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL 2, PROCEEDINGS | 2003年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work presents a novel approach to object localization in complex imagery. In particular, the spatial extents of objects characterized by distinct spatial signatures at multiple scales are estimated by using statistical models to control a simple region growing process. Texture motifs are used to model the spatial signatures at the smallest, or pixel, scale. Markov random fields are used to model the spatial signatures at the larger, or motif, scale. These models are used to iteratively expand a bounding box to approximate the spatial extent of an object. The approach is applied to localizing geo-spatial objects in high-resolution panchromatic aerial imagery.
引用
收藏
页码:1049 / 1052
页数:4
相关论文
共 7 条
[1]  
BHAGAVATHY S, 2002, INT C PATT REC QUEB
[2]  
HILL LL, 1999, D LIB
[3]   Texture features for browsing and retrieval of image data [J].
Manjunath, BS ;
Ma, WY .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1996, 18 (08) :837-842
[4]  
MANJUNATH BS, 1996, IEEE INT C IM PROC L
[5]  
MANJUNATH BS, 2002, INTRO MPEG7 MULTIMED
[6]   MRF parameter estimation by MCMC method [J].
Wang, L ;
Liu, J ;
Li, SZ .
PATTERN RECOGNITION, 2000, 33 (11) :1919-1925
[7]   A texture descriptor for browsing and similarity retrieval [J].
Wu, P ;
Manjunath, BS ;
Newsam, S ;
Shin, HD .
SIGNAL PROCESSING-IMAGE COMMUNICATION, 2000, 16 (1-2) :33-43