Cluster Forecasting of Corruption Using Nonlinear Autoregressive Models with Exogenous Variables (NARX)-An Artificial Neural Network Analysis
被引:5
|
作者:
Ghahari, SeyedAli
论文数: 0引用数: 0
h-index: 0
机构:
Purdue Univ, Lyles Sch Civil Engn, W Lafayette, IN 47907 USAPurdue Univ, Lyles Sch Civil Engn, W Lafayette, IN 47907 USA
Ghahari, SeyedAli
[1
]
Queiroz, Cesar
论文数: 0引用数: 0
h-index: 0
机构:
World Bank, Washington, DC 20433 USAPurdue Univ, Lyles Sch Civil Engn, W Lafayette, IN 47907 USA
Queiroz, Cesar
[2
]
Labi, Samuel
论文数: 0引用数: 0
h-index: 0
机构:
Purdue Univ, Lyles Sch Civil Engn, W Lafayette, IN 47907 USAPurdue Univ, Lyles Sch Civil Engn, W Lafayette, IN 47907 USA
Labi, Samuel
[1
]
McNeil, Sue
论文数: 0引用数: 0
h-index: 0
机构:
Univ Delaware, Dept Civil & Environm Engn, Newark, DE 19716 USA
Univ New South Wales, Sch Civil & Environm Engn, Sydney, NSW 2052, AustraliaPurdue Univ, Lyles Sch Civil Engn, W Lafayette, IN 47907 USA
McNeil, Sue
[3
,4
]
机构:
[1] Purdue Univ, Lyles Sch Civil Engn, W Lafayette, IN 47907 USA
[2] World Bank, Washington, DC 20433 USA
[3] Univ Delaware, Dept Civil & Environm Engn, Newark, DE 19716 USA
[4] Univ New South Wales, Sch Civil & Environm Engn, Sydney, NSW 2052, Australia
Any effort to combat corruption can benefit from an examination of past and projected worldwide trends. In this paper, we forecast the level of corruption in countries by integrating artificial neural network modeling and time series analysis. The data were obtained from 113 countries from 2007 to 2017. The study is carried out at two levels: (a) the global level, where all countries are considered as a monolithic group; and (b) the cluster level, where countries are placed into groups based on their development-related attributes. For each cluster, we use the findings from our previous study on the cluster analysis of global corruption using machine learning methods that identified the four most influential corruption factors, and we use those as independent variables. Then, using the identified influential factors, we forecast the level of corruption in each cluster using nonlinear autoregressive recurrent neural network models with exogenous inputs (NARX), an artificial neural network technique. The NARX models were developed for each cluster, with an objective function in terms of the Corruption Perceptions Index (CPI). For each model, the optimal neural network is determined by fine-tuning the hyperparameters. The analysis was repeated for all countries as a single group. The accuracy of the models is assessed by comparing the mean square errors (MSEs) of the time series models. The results suggest that the NARX artificial neural network technique yields reliable future values of CPI globally or for each cluster of countries. This can assist policymakers and organizations in assessing the expected efficacies of their current or future corruption control policies from a global perspective as well as for groups of countries.
机构:
City Univ Macau, Inst Data Sci, Macau 999078, Peoples R ChinaCity Univ Macau, Inst Data Sci, Macau 999078, Peoples R China
Li, Guang
Liu, Fangfang
论文数: 0引用数: 0
h-index: 0
机构:
Capital Normal Univ, High Sch, Beijing 100048, Peoples R ChinaCity Univ Macau, Inst Data Sci, Macau 999078, Peoples R China
Liu, Fangfang
Sharma, Ashutosh
论文数: 0引用数: 0
h-index: 0
机构:
Southern Fed Univ, Inst Comp Technol & Informat Secur, Rostov Na Donu, RussiaCity Univ Macau, Inst Data Sci, Macau 999078, Peoples R China
Sharma, Ashutosh
Khalaf, Osamah Ibrahim
论文数: 0引用数: 0
h-index: 0
机构:
Al Nahrain Univ, Al Nahrain Nanorenewable Energy Res Ctr, Baghdad, IraqCity Univ Macau, Inst Data Sci, Macau 999078, Peoples R China
Khalaf, Osamah Ibrahim
Alotaibi, Youseef
论文数: 0引用数: 0
h-index: 0
机构:
Umm Al Qura Univ, Dept Comp Sci, Coll Comp & Informat Syst, Mecca, Saudi ArabiaCity Univ Macau, Inst Data Sci, Macau 999078, Peoples R China
Alotaibi, Youseef
Alsufyani, Abdulmajeed
论文数: 0引用数: 0
h-index: 0
机构:
Taif Univ, Dept Comp Sci, Coll Comp & Informat Technol, POB 11099, At Taif 21944, Saudi ArabiaCity Univ Macau, Inst Data Sci, Macau 999078, Peoples R China
Alsufyani, Abdulmajeed
Alghamdi, Saleh
论文数: 0引用数: 0
h-index: 0
机构:
Taif Univ, Dept Informat Technol, Coll Comp & Informat Technol, At Taif, Saudi ArabiaCity Univ Macau, Inst Data Sci, Macau 999078, Peoples R China
机构:
Shenzhen Expressway Engn Testing Co Ltd, Shenzhen, Peoples R ChinaShenzhen Expressway Engn Testing Co Ltd, Shenzhen, Peoples R China
Hu, Huanlong
Gor, Mesut
论文数: 0引用数: 0
h-index: 0
机构:
Firat Univ, Div Geotech Engn, Civil Engn Dept, Engn Fac, TR-23119 Elazig, TurkeyShenzhen Expressway Engn Testing Co Ltd, Shenzhen, Peoples R China
Gor, Mesut
Hossein Moayedi
论文数: 0引用数: 0
h-index: 0
机构:
Duy Tan Univ, Inst Res & Dev, Da Nang 550000, Vietnam
Duy Tan Univ, Fac Civil Engn, Da Nang 550000, VietnamShenzhen Expressway Engn Testing Co Ltd, Shenzhen, Peoples R China
Hossein Moayedi
Osouli, Abdolreza
论文数: 0引用数: 0
h-index: 0
机构:
Southern Illinois Univ, Civil Engn Dept, Edwardsville, IL USAShenzhen Expressway Engn Testing Co Ltd, Shenzhen, Peoples R China
Osouli, Abdolreza
Loke Kok Foong
论文数: 0引用数: 0
h-index: 0
机构:
Duy Tan Univ, Inst Res & Dev, Da Nang 550000, Vietnam
Duy Tan Univ, Fac Civil Engn, Da Nang 550000, VietnamShenzhen Expressway Engn Testing Co Ltd, Shenzhen, Peoples R China
机构:
Chongqing Creat Vocat Coll, Chongqing 402160, Peoples R ChinaChongqing Creat Vocat Coll, Chongqing 402160, Peoples R China
Liu, Yijie
Yan, Gongxing
论文数: 0引用数: 0
h-index: 0
机构:
Luzhou Vocat & Tech Coll, Sch Intelligent Construct, Luzhou 646000, Peoples R China
Luzhou Key Lab Intelligent Construction & Low Carb, Luzhou 646000, Peoples R ChinaChongqing Creat Vocat Coll, Chongqing 402160, Peoples R China
Yan, Gongxing
Settanni, Andrea
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tirana, Tirana, Albania
Islamic Univ, Coll Tech Engn, Najaf, IraqChongqing Creat Vocat Coll, Chongqing 402160, Peoples R China
机构:
King Abdulaziz Univ, Dept Mech Engn, Jeddah 21589, Saudi ArabiaKing Abdulaziz Univ, Dept Mech Engn, Jeddah 21589, Saudi Arabia
Salilih, Elias M.
Abusorrah, Abdullah M.
论文数: 0引用数: 0
h-index: 0
机构:
King Abdulaziz Univ, Ctr Res Excellence Renewable Energy & Power Syst, Jeddah 21589, Saudi Arabia
King Abdulaziz Univ, Dept Elect & Comp Engn, Fac Engn, Jeddah 21589, Saudi Arabia
King Abdulaziz Univ, KA CARE Energy Res & Innovat Ctr, Jeddah 21589, Saudi ArabiaKing Abdulaziz Univ, Dept Mech Engn, Jeddah 21589, Saudi Arabia
Abusorrah, Abdullah M.
Abu-Hamdeh, Nidal H.
论文数: 0引用数: 0
h-index: 0
机构:
King Abdulaziz Univ, Ctr Res Excellence Renewable Energy & Power Syst, Jeddah 21589, Saudi Arabia
King Abdulaziz Univ, KA CARE Energy Res & Innovat Ctr, Jeddah 21589, Saudi Arabia
King Abdulaziz Univ, Dept Mech Engn, Fac Engn, Jeddah 21589, Saudi ArabiaKing Abdulaziz Univ, Dept Mech Engn, Jeddah 21589, Saudi Arabia