All-strain based valley filter in graphene nanoribbons using snake states

被引:35
作者
Cavalcante, L. S. [1 ]
Chaves, A. [1 ,2 ]
da Costa, D. R. [1 ,3 ]
Farias, G. A. [1 ]
Peeters, F. M. [1 ,3 ]
机构
[1] Univ Fed Ceara, Dept Fis, Caixa Postal 6030, BR-60455760 Fortaleza, Ceara, Brazil
[2] Columbia Univ, Dept Chem, 3000 Broadway, New York, NY 10027 USA
[3] Univ Antwerp, Dept Phys, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
关键词
ELECTRONIC-PROPERTIES; FIELD;
D O I
10.1103/PhysRevB.94.075432
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A pseudomagnetic field kink can be realized along a graphene nanoribbon using strain engineering. Electron transport along this kink is governed by snake states that are characterized by a single propagation direction. Those pseudomagnetic fields point towards opposite directions in the K and K' valleys, leading to valley polarized snake states. In a graphene nanoribbon with armchair edges this effect results in a valley filter that is based only on strain engineering. We discuss how to maximize this valley filtering by adjusting the parameters that define the stress distribution along the graphene ribbon.
引用
收藏
页数:7
相关论文
共 33 条
[1]   Novel effects of strains in graphene and other two dimensional materials [J].
Amorim, B. ;
Cortijo, A. ;
de Juan, F. ;
Grushine, A. G. ;
Guinea, F. ;
Gutierrez-Rubio, A. ;
Ochoa, H. ;
Parente, V. ;
Roldan, R. ;
San-Jose, P. ;
Schiefele, J. ;
Sturla, M. ;
Vozmediano, M. A. H. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2016, 617 :1-54
[2]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[3]   Wave-packet dynamics and valley filter in strained graphene [J].
Chaves, Andrey ;
Covaci, L. ;
Rakhimov, Kh Yu ;
Farias, G. A. ;
Peeters, F. M. .
PHYSICAL REVIEW B, 2010, 82 (20)
[4]   Valley filtering using electrostatic potentials in bilayer graphene [J].
da Costa, D. R. ;
Chaves, Andrey ;
Sena, S. H. R. ;
Farias, G. A. ;
Peeters, F. M. .
PHYSICAL REVIEW B, 2015, 92 (04)
[5]   Wave-packet scattering on graphene edges in the presence of a pseudomagnetic field [J].
da Costa, D. R. ;
Chaves, A. ;
Farias, G. A. ;
Covaci, L. ;
Peeters, F. M. .
PHYSICAL REVIEW B, 2012, 86 (11)
[6]   Towards observation of pseudo-magnetic fields in suspended graphene devices [J].
Downs, C. S. C. ;
Usher, A. ;
Martin, J. .
JOURNAL OF APPLIED PHYSICS, 2016, 119 (19)
[7]   Valley filter in strain engineered graphene [J].
Fujita, T. ;
Jalil, M. B. A. ;
Tan, S. G. .
APPLIED PHYSICS LETTERS, 2010, 97 (04)
[8]   Conductance quantization and snake states in graphene magnetic waveguides [J].
Ghosh, T. K. ;
De Martino, A. ;
Haeusler, W. ;
Dell'Anna, L. ;
Egger, R. .
PHYSICAL REVIEW B, 2008, 77 (08)
[9]   Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering [J].
Guinea, F. ;
Katsnelson, M. I. ;
Geim, A. K. .
NATURE PHYSICS, 2010, 6 (01) :30-33
[10]   Generating quantizing pseudomagnetic fields by bending graphene ribbons [J].
Guinea, F. ;
Geim, A. K. ;
Katsnelson, M. I. ;
Novoselov, K. S. .
PHYSICAL REVIEW B, 2010, 81 (03)