Dark soliton control in inhomogeneous optical fibers

被引:52
作者
Liu, Wenjun [1 ]
Huang, Longgang [1 ]
Huang, Ping [1 ]
Li, Yanqing [1 ]
Lei, Ming [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
Dark solitons; Soliton control; Soliton interactions; Variable-coefficient nonlinear; Schrodinger equation; NONLINEAR SCHRODINGER-EQUATION; NORMAL DISPERSION REGIME; VARIABLE-COEFFICIENTS; SYMBOLIC COMPUTATION; DATA-TRANSMISSION; PHASE MODULATION; PULSES; AMPLIFICATION; PROPAGATION; COUPLER;
D O I
10.1016/j.aml.2016.05.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Analytic two-dark soliton solutions for a variable-coefficient nonlinear Schrodinger equation are obtained via modified Hirota method. Parallel solitons are observed and soliton control such as the soliton compression is realized with different group velocity dispersion profiles. Besides, soliton interactions are investigated with the interaction distance being adjusted. In addition, soliton repulsive structures as well as attractive ones are obtained with exponential dispersion profile. Results in our research may be useful for the soliton control in inhomogeneous optical fibers, which will be a benefit to the realistic optical communication systems. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:80 / 87
页数:8
相关论文
共 46 条
[1]  
Agrawal G.P., 2002, Nonlinear fiber optics
[2]  
Bigo S., OPT FIB COMM C
[3]   SOLITON SWITCH USING BIREFRINGENT OPTICAL FIBERS [J].
CHEN, CJ ;
WAI, PKA ;
MENYUK, CR .
OPTICS LETTERS, 1990, 15 (09) :477-479
[4]   Spatiotemporal Hermite-Gaussian solitons of a (3+1)-dimensional partially nonlocal nonlinear Schrodinger equation [J].
Dai, Chao-Qing ;
Wang, Yu ;
Liu, Jiu .
NONLINEAR DYNAMICS, 2016, 84 (03) :1157-1161
[5]  
Dai CQ, 2016, NONLINEAR DYNAM, V83, P2453, DOI 10.1007/s11071-015-2493-3
[6]  
Dai CQ, 2015, NONLINEAR DYNAM, V80, P715, DOI 10.1007/s11071-015-1900-0
[7]  
Doran N.J., 1998, OPT FIB COMM C OFC O
[8]   Light propagation through a nonlinear defect: symmetry breaking and controlled soliton emission [J].
Fratalocchi, Andrea ;
Assanto, Gaetano .
OPTICS LETTERS, 2006, 31 (10) :1489-1491
[9]   Multiple Soliton Control in Fiber Lasers by Active Intensity Modulation [J].
Gumenyuk, Regina ;
Okhotnikov, Oleg G. .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2013, 25 (05) :454-456
[10]   A new approach to exact soliton solutions and soliton interaction for the nonlinear Schrodinger equation with variable coefficients [J].
Hao, RY ;
Li, L ;
Li, ZH ;
Xue, WR ;
Zhou, GS .
OPTICS COMMUNICATIONS, 2004, 236 (1-3) :79-86