Coherent terahertz spin-wave emission associated with ferrimagnetic domain wall dynamics

被引:57
作者
Oh, Se-Hyeok [1 ]
Kim, Se Kwon [2 ]
Lee, Dong-Kyu [3 ]
Go, Gyungchoon [3 ]
Kim, Kab-Jin [4 ,5 ]
Ono, Teruo [5 ]
Tserkovnyak, Yaroslav [2 ]
Lee, Kyung-Jin [1 ,3 ,6 ]
机构
[1] Korea Univ, Dept Nanosemicond & Engn, Seoul 02841, South Korea
[2] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
[3] Korea Univ, Dept Mat Sci & Engn, Seoul 02841, South Korea
[4] Korea Adv Inst Sci & Technol, Dept Phys, Daejeon 34141, South Korea
[5] Kyoto Univ, Inst Chem Res, Kyoto 6110011, Japan
[6] Korea Univ, KU KIST Grad Sch Converging Sci & Technol, Seoul 02841, South Korea
基金
新加坡国家研究基金会;
关键词
Spin waves - Spin dynamics - Terahertz waves - Angular momentum - Ferrimagnetism;
D O I
10.1103/PhysRevB.96.100407
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We theoretically study the dynamics of ferrimagnetic domain walls in the presence of a Dzyaloshinskii-Moriya interaction. We find that an application of a dc magnetic field can induce terahertz spin-wave emission by driving ferrimagnetic domain walls, which is not possible for ferromagnetic or antiferromagnetic domain walls. The Dzyaloshinskii-Moriya interaction is shown to facilitate terahertz spin-wave emission in a wide range of the net angular momentum by increasing the Walker breakdown field. Moreover, we show that spin-orbit torque combined with the Dzyaloshinskii-Moriya interaction also drives fast ferrimagnetic domain wall motion by emitting terahertz spin waves in a wide range of the net angular momentum.
引用
收藏
页数:5
相关论文
共 36 条
[1]  
Andreev A. F., 1980, Soviet Physics - Uspekhi, V23, P21, DOI 10.1070/PU1980v023n01ABEH004859
[2]  
[Anonymous], 1960, Course of Theoretical Physics
[3]   Investigation of domain wall motion in RE-TM magnetic wire towards a current driven memory and logic [J].
Awano, Hiroyuki .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2015, 383 :50-55
[4]  
Baltz V., ARXIV160604284
[5]   Continuous wave operation of a mid-infrared semiconductor laser at room temperature [J].
Beck, M ;
Hofstetter, D ;
Aellen, T ;
Faist, J ;
Oesterle, U ;
Ilegems, M ;
Gini, E ;
Melchior, H .
SCIENCE, 2002, 295 (5553) :301-305
[6]   Magnetization dynamics of the ferrimagnet CoGd near the compensation of magnetization and angular momentum [J].
Binder, M. ;
Weber, A. ;
Mosendz, O. ;
Woltersdorf, G. ;
Izquierdo, M. ;
Neudecker, I. ;
Dahn, J. R. ;
Hatchard, T. D. ;
Thiele, J. -U. ;
Back, C. H. ;
Scheinfein, M. R. .
PHYSICAL REVIEW B, 2006, 74 (13)
[7]   Terahertz Antiferromagnetic Spin Hall Nano-Oscillator [J].
Cheng, Ran ;
Xiao, Di ;
Brataas, Arne .
PHYSICAL REVIEW LETTERS, 2016, 116 (20)
[8]  
Einstein A, 1905, ANN PHYS-BERLIN, V17, P891
[9]   Atomistic spin model simulations of magnetic nanomaterials [J].
Evans, R. F. L. ;
Fan, W. J. ;
Chureemart, P. ;
Ostler, T. A. ;
Ellis, M. O. A. ;
Chantrell, R. W. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2014, 26 (10)
[10]   Spin-Orbit-Torque Efficiency in Compensated Ferrimagnetic Cobalt-Terbium Alloys [J].
Finley, Joseph ;
Liu, Luqiao .
PHYSICAL REVIEW APPLIED, 2016, 6 (05)