A comparison of collaborative-filtering recommendation algorithms for e-commerce

被引:191
作者
Huang, Zan
Zeng, Daniel
Chen, Hsinchen
机构
[1] Penn State Univ, Smeal Coll Business, Dept Supply Chain & Informat Syst, University Pk, PA 16802 USA
[2] Univ Arizona, Dept Management Informat Syst, Tucson, AZ 85721 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
D O I
10.1109/MIS.2007.4338497
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Various Collaborative Filtering (CF) recommendation algorithms characterize consumers and products by the data available about consumer-product interactions in e-commerce applications. The user-based algorithm predicts a target consumer's future transactions by aggregating the observed transactions of similar consumers. The item-based algorithm computes product similarities instead of consumer similarities and gives the products' potential scores for reach consumer. The generative-model algorithm uses latent class variables to explain the patterns of interactions between consumers and products. The spreading-activation algorithm addresses the sparsity problem by exploring transitive associations between consumers and products in a bipartite consumer-product graph. The link-analysis algorithms adapts Hypertext-Induced Topic Selection (HITS) algorithm in the recommendation context.
引用
收藏
页码:68 / 78
页数:11
相关论文
共 13 条
[1]  
[Anonymous], 1994, 1994 ACM C COMPUTER, DOI DOI 10.1145/192844.192905
[2]  
[Anonymous], 1998, Proceedings of the 7th international conference on World Wide Web (WWW), DOI [10.1016/S0169-7552(98)00110-X, DOI 10.1016/S0169-7552(98)00110-X]
[3]  
Breese J. S., 1998, UAI, P43, DOI 10.5555/2074094.2074100
[4]   Item-based top-N recommendation algorithms [J].
Deshpande, M ;
Karypis, G .
ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2004, 22 (01) :143-177
[5]   Evaluating collaborative filtering recommender systems [J].
Herlocker, JL ;
Konstan, JA ;
Terveen, K ;
Riedl, JT .
ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2004, 22 (01) :5-53
[6]   Latent semantic models for collaborative filtering [J].
Hofmann, T .
ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2004, 22 (01) :89-115
[7]   Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering [J].
Huang, Z ;
Chen, H ;
Zeng, D .
ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2004, 22 (01) :116-142
[8]  
Huang Z., 2004, P 2004 AM C INF SYST
[9]   Authoritative sources in a hyperlinked environment [J].
Kleinberg, JM .
JOURNAL OF THE ACM, 1999, 46 (05) :604-632
[10]  
PAPAGELIS M, 2005, P 3 INT C TRUST MAN, P224