An extension of Borel-Laplace methods and monomial summability

被引:7
作者
Carrillo, Sergio A. [1 ]
Mozo-Fernandez, Jorge [2 ]
机构
[1] Univ Sergio Arboleda, Escuela Ciencias Exactas & Ingn, Calle 74,14-14, Bogota, Colombia
[2] Univ Valladolid, Fac Ciencias, Dept Algebra Anal Matemat Geometria & Topol, Campus Miguel Delibes,Paseo de Belen 7, E-47011 Valladolid, Spain
关键词
Summability; Borel-Laplace; Partial differential equations;
D O I
10.1016/j.jmaa.2017.08.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we will show that monomial summability can be characterized using Borel-Laplace like integral transformations depending of a parameter 0< s< 1. We will apply this result to prove 1-summability in a monomial of formal solutions of a family of partial differential equations. (c) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:461 / 477
页数:17
相关论文
共 8 条
  • [1] Multisummability of formal solutions of singular perturbation problems
    Balser, W
    Mozo-Fernández, J
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 183 (02) : 526 - 545
  • [2] Balser W., 2005, ANN FAC SCI TOULOUSE, V14, P593
  • [3] BALSER W., 2000, Formal power series and linear systems of meromorphic ordinary differential equations
  • [4] Canalis-Durand M, 2000, J REINE ANGEW MATH, V518, P95
  • [5] Monomial summability and doubly singular differential equations
    Canalis-Durand, Mireille
    Mozo-Fernandez, Jorge
    Schafke, Reinhard
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 233 (02) : 485 - 511
  • [6] Carrillo S.A., 2016, THESIS
  • [7] Tauberian properties for monomial summability with applications to Pfaffian systems
    Carrillo, Sergio A.
    Mozo-Fernandez, Jorge
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (12) : 7237 - 7255
  • [8] Sanz J, 2002, ASYMPTOTIC ANAL, V29, P115