An efficient method for autoencoder-based collaborative filtering

被引:5
|
作者
Wang, Yi-Lei [1 ,2 ]
Tang, Wen-Zhe [2 ]
Yang, Xian-Jun [2 ]
Wu, Ying-Jie [2 ]
Chen, Fu-Ji [1 ]
机构
[1] Fuzhou Univ, Sch Econ & Management, Fuzhou, Fujian, Peoples R China
[2] Fuzhou Univ, Coll Math & Comp Sci, Fuzhou 350108, Fujian, Peoples R China
来源
关键词
autoencoder; collaborative filtering; deep learning; recommender system;
D O I
10.1002/cpe.4507
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Collaborative filtering (CF) is a widely used technique in recommender systems. With rapid development in deep learning, neural network-based CF models have gained great attention in the recent years, especially autoencoder-based CF model. Although autoencoder-based CF model is faster compared with some existing neural network-based models (eg, Deep Restricted Boltzmann Machine-based CF), it is still impractical to handle extremely large-scale data. In this paper, we practically verify that most non-zero entries of the input matrix are concentrated in a few rows. Considering this sparse characteristic, we propose a new method for training autoencoder-based CF. We run experiments on two popular datasets MovieLens 1 M and MovieLens 10 M. Experimental results show that our algorithm leads to orders of magnitude speed-up for training (stacked) autoencoder-based CF model while achieving comparable performance compared with existing state-of-the-art models.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Autoencoder-based unsupervised clustering and hashing
    Bolin Zhang
    Jiangbo Qian
    Applied Intelligence, 2021, 51 : 493 - 505
  • [32] An autoencoder-based snow drought index
    Sinan Rasiya Koya
    Kanak Kanti Kar
    Shivendra Srivastava
    Tsegaye Tadesse
    Mark Svoboda
    Tirthankar Roy
    Scientific Reports, 13
  • [33] Autoencoder-based Network Anomaly Detection
    Chen, Zhaomin
    Yeo, Chai Kiat
    Lee, Bu Sung
    Lau, Chiew Tong
    2018 WIRELESS TELECOMMUNICATIONS SYMPOSIUM (WTS), 2018,
  • [34] An autoencoder-based snow drought index
    Koya, Sinan Rasiya
    Kar, Kanak Kanti
    Srivastava, Shivendra
    Tadesse, Tsegaye
    Svoboda, Mark
    Roy, Tirthankar
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [35] An autoencoder-based spectral clustering algorithm
    Li, Xinning
    Zhao, Xiaoxiao
    Chu, Derun
    Zhou, Zhiping
    SOFT COMPUTING, 2020, 24 (03) : 1661 - 1671
  • [36] Autoencoder-based holographic image restoration
    Shimobaba, Tomoyoshi
    Endo, Yutaka
    Hirayama, Ryuji
    Nagahama, Yuki
    Takahashi, Takayuki
    Nishitsuji, Takashi
    Kakue, Takashi
    Shiraki, Atsushi
    Takada, Naoki
    Masuda, Nobuyuki
    Ito, Tomoyoshi
    APPLIED OPTICS, 2017, 56 (13) : F27 - F30
  • [37] TAElog: A Novel Transformer AutoEncoder-Based Log Anomaly Detection Method
    Zhao, Changzhi
    Huang, Kezhen
    Wu, Di
    Han, Xueying
    Du, Dan
    Zhou, Yutian
    Lu, Zhigang
    Liu, Yuling
    INFORMATION SECURITY AND CRYPTOLOGY, INSCRYPT 2023, PT II, 2024, 14527 : 37 - 52
  • [38] Efficient in Vivo Neural Signal Compression Using an Autoencoder-Based Neural Network
    Valencia, Daniel
    Mercier, Patrick P.
    Alimohammad, Amir
    IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2024, 18 (03) : 691 - 701
  • [39] Scalable Approximate NonSymmetric Autoencoder for Collaborative Filtering
    Spisak, Martin
    Bartyzal, Radek
    Hoskovec, Antonin
    Peska, Ladislav
    Tuma, Miroslav
    PROCEEDINGS OF THE 17TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2023, 2023, : 763 - 770
  • [40] Scalable Linear Shallow Autoencoder for Collaborative Filtering
    Vadcura, Vojtech
    Alves, Rodrigo
    Kasalicky, Petr
    Kordik, Pavel
    PROCEEDINGS OF THE 16TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2022, 2022, : 604 - 609