Implementating Spatio-Temporal Graph Convolutional Networks on Graphcore IPUs

被引:2
|
作者
Moe, Johannes [1 ]
Pogorelov, Konstantin [2 ]
Schroeder, Daniel Thilo [2 ]
Langguth, Johannes [3 ]
机构
[1] Univ Oslo, Simula Res Lab, Oslo, Norway
[2] Simula Res Lab, Oslo, Norway
[3] Univ Bergen, Simula Res Lab, Oslo, Norway
来源
2022 IEEE 36TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW 2022) | 2022年
基金
欧盟地平线“2020”;
关键词
Graph Neural Networks; STGCN; IPU; AI accelerator; Performance;
D O I
10.1109/IPDPSW55747.2022.00016
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Artificial neural networks have been used for a multitude of regression tasks, and their descendants have expanded the domain to many applications such as image and speech recognition, filtering of social networks, and machine translation. While conventional and recurrent neural networks work well on data represented in Euclidean space, they struggle with data in non-Euclidean space. Graph Neural Networks (GNN) expand recurrent neural networks to directly process sparse representations of graphs, but they are computationally expensive, which invites the use of powerful hardware accelerators. In this paper, we investigate the viability of the Graphcore Intelligence Processing Unit (IPU) for efficient implementation of SpatioTemporal Graph Convolutional Networks. The results show that IPUs are well suited for this task.
引用
收藏
页码:45 / 54
页数:10
相关论文
共 50 条
  • [1] Continual spatio-temporal graph convolutional networks
    Hedegaard, Lukas
    Heidari, Negar
    Iosifidis, Alexandros
    PATTERN RECOGNITION, 2023, 140
  • [2] Spatio-Temporal Joint Graph Convolutional Networks for Traffic Forecasting
    Zheng, Chuanpan
    Fan, Xiaoliang
    Pan, Shirui
    Jin, Haibing
    Peng, Zhaopeng
    Wu, Zonghan
    Wang, Cheng
    Yu, Philip S.
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (01) : 372 - 385
  • [3] Stacked Spatio-Temporal Graph Convolutional Networks for Action Segmentation
    Ghosh, Pallabi
    Yao, Yi
    Davis, Larry S.
    Divakaran, Ajay
    2020 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2020, : 565 - 574
  • [4] SPATIO-TEMPORAL GRAPH CONVOLUTIONAL NETWORKS FOR CONTINUOUS SIGN LANGUAGE RECOGNITION
    Parelli, Maria
    Papadimitriou, Katerina
    Potamianos, Gerasimos
    Pavlakos, Georgios
    Maragos, Petros
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 8457 - 8461
  • [5] Spatio-temporal adaptive graph convolutional networks for traffic flow forecasting
    Ma, Qiwei
    Sun, Wei
    Gao, Junbo
    Ma, Pengwei
    Shi, Mengjie
    IET INTELLIGENT TRANSPORT SYSTEMS, 2023, 17 (04) : 691 - 703
  • [6] Conflict Forecasting with Event Data and Spatio-Temporal Graph Convolutional Networks
    Brandt, Patrick T.
    D'Orazio, Vito
    Khan, Latifur
    Li, Yi-Fan
    Osorio, Javier
    Sianan, Marcus
    INTERNATIONAL INTERACTIONS, 2022, 48 (04) : 800 - 822
  • [7] DYNAMIC SPATIO-TEMPORAL GRAPH CONVOLUTIONAL NETWORKS FOR CARDIAC MOTION ANALYSIS
    Lu, Ping
    Bai, Wenjia
    Rueckert, Daniel
    Noble, J. Alison
    2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 122 - 125
  • [8] Spatio-Temporal Action Graph Networks
    Herzig, Roei
    Levi, Elad
    Xu, Huijuan
    Gao, Hang
    Brosh, Eli
    Wang, Xiaolong
    Globerson, Amir
    Darrell, Trevor
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 2347 - 2356
  • [9] Global-local spatio-temporal graph convolutional networks for video summarization
    Wu, Guangli
    Song, Shanshan
    Zhang, Jing
    COMPUTERS & ELECTRICAL ENGINEERING, 2024, 118
  • [10] STFGCN: Spatio-Temporal Fusion Graph Convolutional Networks for Subway Traffic Prediction
    Zhang, Xiaoxi
    Tian, Zhanwei
    Shi, Yan
    Guan, Qingwen
    Lu, Yan
    Pan, Yujie
    IEEE ACCESS, 2024, 12 : 194449 - 194461