A non-conformal eXtended Finite Element approach: Integral matching Xfem

被引:17
作者
Chahine, Elie [1 ]
Laborde, Patrick [2 ]
Renard, Yves [3 ]
机构
[1] Paul Scherrer Inst, OHSA B06, CH-5232 Villigen, Switzerland
[2] Univ Toulouse 3, Univ Toulouse, CNRS, Inst Math Toulouse,UMR 5219, F-31062 Toulouse 9, France
[3] Univ Lyon, CNRS, INSA Lyon, ICJ UMR5208,LaMCoS UMR5259, F-69621 Villeurbanne, France
关键词
Fracture mechanics; Extended finite element method; Hybrid formulation; Mortar condition; Non-conformal method; Error estimate; Numerical convergence rate; IMPLEMENTATION; PARTITION;
D O I
10.1016/j.apnum.2010.10.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is dedicated to the mathematical and numerical analysis of a new Xfem approach: the integral maching Xfem. It is known that the quality of the approximation and the convergence rate of Xfem type methods is broadly influenced by the transition layer between the singular enrichment area and the rest of the domain. In the presented method, this transition layer is replaced by an interface associated with an integral matching condition of mortar type. We prove an optimal convergence result for such a non-conformal approximation method and we perform some numerical experiments showing the advantages of the integral matching Xfem with respect to former Xfem approaches. (C) 2010 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:322 / 343
页数:22
相关论文
共 28 条
[1]  
[Anonymous], 1978, STUDIES MATH ITS APP
[2]   Improved implementation and robustness study of the X-FEM for stress analysis around cracks [J].
Béchet, E ;
Minnebol, H ;
Moës, N ;
Burgardt, B .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2005, 64 (08) :1033-1056
[3]   Hybrid finite element methods for the Signorini problem [J].
Ben Belgacem, F ;
Renard, Y .
MATHEMATICS OF COMPUTATION, 2003, 72 (243) :1117-1145
[4]  
Bernardi Christine, 1994, Nonlinear Partial Equ. Appl.
[5]  
Brezzi F., 1991, Mixed and Hybrid Finite Element Methods, V15
[6]  
Chahine E., 2008, THESIS INSA TOULOUSE
[7]   Crack tip enrichment in the XFEM using a cutoff function [J].
Chahine, Elie ;
Laborde, Patrick ;
Renard, Yves .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2008, 75 (06) :629-646
[8]  
Chen ZM, 2000, NUMER MATH, V84, P527, DOI 10.1007/s002119900123
[9]   On the construction of blending elements for local partition of unity enriched finite elements [J].
Chessa, J ;
Wang, HW ;
Belytschko, T .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2003, 57 (07) :1015-1038
[10]  
Duvaut G., 1972, INEQUATIONS MECANIQU, P387